Publications using the Oulu NM data

This list is by far not completed and include only papers we are aware of.

  1. Kangas, J., H. Kananen, and J. Kokkoniemi, On the variations of the cosmic ray l-meson intensity during rapid pressure and about the applicability of Duperier's model, Geophysica, 9:4, 321-325, 1967.
  2. Kokkoniemi, J., H. Kananen, and J. Kangas, Some aspects on atmospheric effects of the cosmic ray l-meson intensity, Geophysica 9:4, 313-319, 1967.
  3. Tanskanen, P., Daily variations of cosmic rays during quiet and disturbed periods in 1965 and 1966, Can. J. Phys. 819, 1968.
  4. Tanskanen, P., Influence of snow on Neutron Monitor intensity, Nature, 219, 5157, 1968.
  5. Lindgren, S.T., The Solar Particle Events of May 23 and May 28, 1967, Solar Physics, 5, 382, 1968.
  6. Sud, L.V., Cosmic ray intensity increase on January 28, 1967, Austral. J. Phys., 21, 755, 1968.
  7. Bukata, R. P.; Gronstal, P. T.; Palmeira, R. A. R., The Small Anisotropy and the Rigidity Spectrum of the March 30, 1969 Solar Flare Event, Solar Physics, 14, 419, 1970.
  8. Lockwood, J.A., Forbush Decreases in the Cosmic Radiation, Space Sci. Rev., 12, 658, 1971.
  9. Duggal, S. P.; Guidi, I.; Pomerantz, M. A., The Unusual Anisotropic Solar Particle Event of November 18, 1968, Solar Physics, 19, 234, 1971.
  10. Hashim, A.; Bercovitch, M.; Steljes, J. F., Streaming of Galactic Cosmic Rays in the Interplanetary Magnetic Field, Solar Physics, 22, 220, 1972.
  11. Duggal, S., Pomeranz, M., Sectorial Anisotropy of Solar Cosmic Rays, Solar Physics, 27, 227, 1972.
  12. Blomster, K. and H. Kananen, Long term variation in the observed mean multiplicity in 9-NM-64 Oulu, Finland, Phys. Fenn., 10, 101, 1975.
  13. Rao, U., High energy cosmic ray observations during August 1972, Space Sci. Rev., 19, 533, 1976.
  14. Mavromichalaki, H., Large amplitude wave-trains of cosmic-ray intensity, Astrophys. Space Sci., 71, 101, 1980.
  15. Fenton, A. J.; Fenton, K. B.; Humble, J. E., Further studies of the cosmic ray flare of November 22, 1977, Procs. Astron. Soc. Australia, v. 4, 111, 1980.
  16. Swinson, D.P. and H. Kananen, Reversal of the cosmic ray density gradient perpendicular to the ecliptic plane, J. Geophys. Res., 87, 1685, 1982.
  17. Shea, M., and D.F. Smart, Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona, Space Sci. Rev., 32, 251, 1982.
  18. Agrawal, S.P., Solar cycle variations of cosmic ray intensity and large-scale structure of the heliosphere, Space Sci. Rev., 34, 127, 1983.
  19. Eronen, T., E. Riihonen, J. Torsti, E. Valtonen, H. Kananen, E. Vainikka, H. Arvela, A.-M. Elo, and J. Peltonen, Search of periodic scintillations in cosmic radiation in the range 2-50 mHz, Adv. Space Res., 9, (4)229-(4)232, 1989.
  20. Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G., Short-term cosmic-ray increases and magnetic cloud-like structures during Forbush decreases, Astron. Astrophys. Suppl. Ser., 81(3), 367, 1989.
  21. Debrunner, H.; Lockwood, J. A.; Ryan, J. M., Solar neutron and proton production during the 1990 May 24 cosmic-ray flare increases, Astrophys. J., 409, 822, 1993.
  22. Duldig, M. L., et al., The Ground Level Enhancements of 1989SEP29 and 1989OCT22, ASTRON. SOC. OF AUSTRALIA, PROCEEDINGS V.10:3, P.211, 1993.
  23. Roldugin, V.K., E.V. Vashenyuk, and H. Kananen, Coincidence of solar cosmic ray increase at close neutron-monitor stations in Apatity and Oulu, Geomagn. Aeron., 33, 105-107, 1993 (in English); (in Russian, 33, 134-136, 1993.)
  24. Dorman, L. I.; Venkatesan, D.; Dorman, L. I., Solar cosmic rays, Space Sci. Rev., 64, p. 183, 1993.
  25. Kocharov, L.G.. et al., Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: Continuous acceleration of relativistic particles, Solar Physics, 150, 267, 1994.
  26. Roldugin, V.K., E.V. Vashenyuk, H. Kananen, and K. Kudela, Statistical characteristics of the signals from ground based cosmic rays at the stations Apatity, Oulu, and Lomninsky Peak. Geomagn. Aeron., 34, 176-180 (English translation); (in Russian, 34, 62-67, 1994).
  27. Cramp, J. L.; Humble, J. E.; Duldig, M. L., The cosmic ray ground-level enhancement of 24 October 1989, Procs. Astron. Soc. Australia, 11, 28, 1994.
  28. Kovaltsov. G.A., I.G. Usoskin, L.G. Kocharov, H. Kananen, and P.J. Tanskanen, Neutron monitor data on the 15 June 1991 flare: Neutrons as a test for proton acceleration scenario, Solar Physics, 158, 395-398, 1995.
  29. Kovaltsov. G.A., L.G. Kocharov, I.G. Usoskin, H. Kananen, P. Tanskanen, and A.Ya. Drobysh, Two components of high energy neutrons at the 24 May 1990 solar flare, Izvestiya RAN, Ser. Fyz., 59, No. 4, 199-203, 1995 (in Russian).
  30. Usoskin, I.G., G.A. Kovaltsov, L.G. Kocharov, H. Kananen, and P. Tanskanen, Solar neutron detection: the method of weighted summarizing of neutron monitor responses, Izvestiya RAN, Ser. Fyz., 59, No. 4, 10-14, 1995 (in Russian).
  31. Stoker, P., Relativistic Solar Proton Events, Space Sci. Rev., 73, 327, 1995.
  32. Torsti, J., et al., The 1990 May 24 Solar Cosmic-Ray Event, Solar Phys., 166, 135, 1996.
  33. Usoskin, I.G., G.A. Kovaltsov, H. Kananen, K. Mursula, and P. Tanskanen, Phase evolution of solar activity and cosmic-ray variation cycles. Solar Physics, 170, 447-452, 1997.
  34. Usoskin, I. G., G. A. Kovaltsov, H. Kananen, and P. Tanskanen, The world neutron monitor network as a tool for the study of solar neutrons, Ann. Geophys., 15, 375-386, 1997.
  35. Debrunner, H., et al., Energetic Neutrons, Protons, and Gamma Rays during the 1990 May 24 Solar Cosmic-Ray Event, ApJ, 479, 997, 1997.
  36. Usoskin, I.G., et al., Period of Unusual Modulation of Cosmic Ray Intensity: The Declining Phase of Cycle 20, ESA Publ. series, ESA SP-415, p.491, 1997.
  37. Usoskin, I. G., H. Kananen, K. Mursula, P. Tanskanen, and G. A. Kovaltsov, Correlative study of solar activity and cosmic ray intensity, J. Geophys. Res., 103, 9567-9574, 1998.
  38. Danilova, O., M. Tyasto, H. Kananen, and P. Tanskanen: The cosmic ray asymptocic directions for station Oulu in the magnetic field of the Tsyganenko 1989 model - Geophysica, 35, Nos. 1-2, 101-109, 1999.
  39. I.G.Usoskin, O.G.Gladysheva, K.Kudela, P.Bobik, H.Kananen - Connections between neutron monitor count rate and solar modulation strength - Czechoslovak J. Phys., 1999, v.49, p.1740-1750.
  40. Danilova, O., The GLE of May 2, 1998: An Effect of Disturbed Magnetosphere on Solar Cosmic Rays, Proc. 26 ICRC, v.6, 399, 1999.
  41. Mursula, K., Simultaneous Occurrence of Mid-term Periodicities in Solar Wind Speed, Geomagnetic Activity and Cosmic Rays, Proc. 26 ICRC, v.7, 123, 1999.
  42. Elo, A.-M., The timing measurement in the air shower experiment in Turku, in: Proc. 26 ICRC, v.5, 320, 1999.
  43. Usoskin, I.G., Time Evolution of Solar Activity and Cosmic Ray Intensity during the Maunder Minimum, in: Proc. 26 ICRC, v.7, 127, 1999.
  44. Stozhkov, Y.I., P.E. Pokrevsky, V.P. Okhlopkov, Long-term negative trend in cosmic ray flux, J. Geophys. Res., 105, 9--17, 2000.
  45. Duldig, M., Australian Cosmic Ray Modulation Research, Publications of the Astronomical Society of Australia, 18, 12, 2001.
  46.  I.G. Usoskin, K. Mursula, and G.A. Kovaltsov, Odd and even cycles in cosmic rays and solar activity - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 3791-3794.
  47. I. G. Usoskin, K. Alanko, K. Mursula, K. Kudela, and G. A. Kovaltsov, Variations of the heliospheric modulation strength during the neutron monitor era - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 3810-3813.
  48. I.G. Usoskin, K. Mursula, and J. Kangas, On-line database of cosmic ray intensities - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 3842.
  49. P. Bobik, K. Kudela, and I. Usoskin, Geomagnetic cutoff Penumbra structure: Approach by transmissivity function - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 4056-4059.
  50. E. V. Vashenyuk, B. B. Gvozdevsky, V. V. Phelkin, I. G. Usoskin, K. Mursula, and G. A. Kovaltsov, The ground-level enhancement of 14 July 2000: Explaining the difference between near-by neutron monitors at Apatity and Oulu - in: Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 2001, p. 3383-3386.
  51. L. Ding, on behalf of the L3 Collaboration, Search for possible enhancement in the flux of high energy muons due to the solar flare of 14 July 2000 with the L3+Cosmics Muon Spectrometer - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 3372-3375.
  52. M. L. Duldig, Fine time resolution analysis of the 14 July 2000 GLE - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 3363-3366.
  53. A. V. Belov, J. W. Bieber, E. A. Eroshenko, P. Evenson, B. B. Gvozdevsky, V. V. Pchelkin, R. Pyle, V. E.Vashenyuk, and V. G. Yanke, The "Bastille Day"; GLE 14 July, 2000 as observed by the worldwide neutron monitor network - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 3346-3349.
  54. S.Tehlik, M., Y.I. Fedorov, K. Kudela, J. Kassovicova, Kinetic approach to an anistropic GLE? - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 3458-3461.
  55. D. Cattani, S. Cecchini, M. Galli, G. Giovannini, G. Longo, A. Pagliarin, and M. Trabisondi, Continuous monitoring of environmental radiation in the Arctic - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 4048-4051.
  56. M. A. Despotashvili, N. A. Nachkebia, and E. O. Fluckiger, Recurrent variations and Forbush decreases of galactic cosmic ray intensity - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 3489-3492.
  57. A. V. Belov, J. W. Bieber, E. A. Eroshenko, P. Evenson, R. Pyle, and V. G. Yanke, Pitch-angle features in cosmic rays in advance of severe magnetic storms: Neutron monitor observations - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 3507-3510.
  58. N. A. Nachkebia, M. A. Despotashvili, and E. O. Fluckiger, Rigidity dependence of two-step Forbush decreases - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 3549-3552.
  59. V. I. Kozlov, S. A. Starodubtsev, A. A. Turpanov, V. G. Grigoryev, V. S. Nikolaev, and A. N. Prikhodko, Long-term forecast of space weather in real-time - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 3887-3890.
  60. A. V.Belov, E. A. Eroshenko, B. Heber, V. G. Yanke, A Raviart, K. Rohrs, R. Muller-Mellin, H. Kunow, G. Wibberenz, and C. Paizis, Latitudinal and radial variation of >2 GeV/n protons and alpha-particles in the southern heliosphere at solar maximum: ULYSSES COSPIN/KET and neutron monitor network observations - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 3998-4001
  61. S. Kavlakov and J. Elsner, Some statistical connections between the cosmic ray intensity, solar activities, geomagnetic changes and hurricane intensification - in: Proc. 27th Intern.Cosmic Ray Conf., Hamburg, 2001, p. 4169-4172.
  62. Danilova OA, Tyasto MI, Vashenyuk EV, et al., Magnetospheric response to the ground-level enhancement of solar cosmic rays on May 2, 1998, Geomagn. Aeronom. 42 (1), 2002, 28-31.
  63. Usoskin, I.G., K. Alanko, K. Mursula, G.A. Kovaltsov, Heliospheric modulation strength during the neutron monitor era, Solar Phys., 207, 389--399, 2002.
  64. Lin, J., Energetics and Propagation of Coronal Mass Ejections in Different Plasma Environments, Chinese J. Astron. Astrophys., 2, 539, 2002.
  65. Bhandari, N., et al., Itawa Bhopji (L3-5) chondrite regolith breccia: Fall, classification, and cosmogenic records, Meteorit. Planet. Sci., 37, 549, 2002.
  66. Bershadskii, A., Extended self-similarity of low-energy cosmic rays, Europhysics Lett., 59(3), 472, 2002.
  67. Poirier, J.; D'Andrea, C., Ground level muons in coincidence with the solar flare of 15 April 2001, J. Geophys. Res., 107(A11), SSH 14-1, DOI 10.1029/2001JA009187, 2002.
  68. Kudela, K., M. Storini, Direct and indirect relations of cosmic rays to Space Weather, in: ESA Publications series SP-477, 289, 2002.
  69. Alanko, K.; Usoskin, I. G.; Mursula, K.; Kovaltsov, G. A., Heliospheric modulation strength: effective neutron monitor energy, Adv. Space Res., 32(4), 615, 2003.
  70. Dorman, Lev; Zukerman, Igor, Initial concept for forecasting the flux and energy spectrum of energetic particles using ground-level cosmic ray observations, Adv. Space Res., 31(4), 925, 2003
  71. Starodubtsev, S. A., and Usoskin, I.G., Long-Term Modulation of the Galactic Cosmic-Ray Fluctuation Spectrum, Astronomy Letters, 29, 594, 2003
  72. Nachkebiya, N., et al., Observed and Expected Features of the 27-day Variations of Galactic Cosmic Rays, Procs.28th ICRC, p.4087, 2003.
  73. Kozlov, V. I.; Kozlov, V. V.; Markov, V. V., Effect of polarity reversal of solar magnetic field in cosmic ray fluctuations, ESA Publ. series SP-535, 117, 2003.
  74. Kozlov, V.; Kudela, K.; Starodubtsev, S.; Turpanov, A.; Usoskin, I.; Yanke, V., Neutron monitor database in real time, ESA Publ. series SP-535, 675, 2003.
  75. Usoskin, I.G., et al., Long-Term Cosmic Ray Modulation by Heliospheric Parameters: Non-linear Relations, Procs.28th ICRC, p.3803, 2003.
  76. Usoskin, I.G., Long-Term Cosmic Ray Intensities: Physical Reconstruction, Procs.28th ICRC, p.4041, 2003.
  77. Kudela K., et al., Geomagnetic activity onset predictions: problems with possible signatures in cosmic rays, ESA Publ. series, SP-535, 575, 2003.
  78. Vashenyuk, Eduard V.; Balabin, B. B.; Gvozdevsky, B. B., Relativistic Solar Proton Dynamics in Large GLE of 23rd Solar Cycle, in: Proc. 28 ICRC, 3401, 2003.
  79. Kaushik, S.C., S.K., Mishra, Study of Forbush Decrease Event and Associated Geomagnetic Field Variation during Space Radiation Storm, in: Proc. 28 ICRC, 3597, 2003.
  80. Alanko, K., I.G. Usoskin, et al., Effective Energy of Neutron Monitors, in: Proc. 28 ICRC, 3901, 2003.
  81. Usoskin, I.G., and S.A. Starodubtsev, Galactic Cosmic Ray Fluctuations: Long-Term Modulation of Power Spectrum, in: Proc. 28 ICRC, 3905, 2003.
  82. Banjanac, R. M. et al., Analysis of Continuous Cosmic-Ray Measurements in Belgrade, in: Proc. 28 ICRC, 1199, 2003.
  83. D'Andrea, C.P., and J. Poirier, A Study of the Ground Level Event of April 15, 2001 with GRAND, in: Proc. 28 ICRC, 3423, 2003.
  84. Usoskin, I.G., et al., REal-time COsmic Ray Database (RECORD), in: Proc. 28 ICRC, 3473, 2003.
  85. Cecchini, S. et al., Cosmic Ray Intensity Variations Observed by Environmental Radiation Monitors, in: Proc. 28 ICRC, 3577, 2003.
  86. Shrivastava, P., High Speed Solar Wind Streams and Cosmic Ray Intensity Variation, in: Proc. 28 ICRC, 3731, 2003.
  87. Nachkebia, N., et al., Interplanetary Magnetic Field Disturbances Affect on the Ozone Profiles, in: Proc. 28 ICRC, 4237, 2003.
  88. Shrivastava, P., Effect of Halo Coronal Mass Ejections on Cosmic Ray Intensity during Ascending Phase of Solar Cycle 23, in: Proc. 28 ICRC, 3635, 2003.
  89. Valdes-Galicia, Jose F.; Lara, A.; Mendoza, B., Long Term Cosmic Ray Variations in Association with Solar Magnetic Flux, in: Proc. 28 ICRC, 4053, 2003.
  90. Ma, Y., et al., Search for a Muon Flux Enhancement during the Solar Flare of 14 July 2000 with the L3+C Data, in: Proc. 28 ICRC, 3393, 2003.
  91. P. Lantos and N. Fuller, History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements, Radiation Protection Dosimetry, 104, 199, 2003.
  92. Starodubtsev, S.A., I.G. Usoskin, and K. Mursula, Rapid Cosmic Ray Fluctuations: Evidence for Cyclic Behaviour, Solar Phys., 224, 335-343, 2004.
  93. Kudela, K., and Brenkus, R., Cosmic ray decreases and geomagnetic activity: list of events 1982-2002, J. Atm. Solar-Terrestr. Phys., 66, 1121, 2004.
  94. Lantos, P., Fuller, N., Semi-empirical model to calculate potential radiation exposure on board airplane during solar particle events, IEEE Transactions on Plasma Science, 32(4), 1468, 2004.
  95. J.F. Valdes-Galicia, A. Lara and B. Mendoza, The solar magnetic flux mid-term periodicities and the solar dynamo, JASTP, 67, 1697, 2005.
  96. Storini, M., Kudela, K., Cordaro, E.G., Massetti, S., Ground-level enhancements during solar cycle 23: Results from SVIRCO, LOMNICKY STIT and LARC neutron monitors, Adv. Space Res., 35 (3), 416-420, 2005.
  97. Usoskin, I.G., K. Alanko-Huotari, G.A. Kovaltsov, and K. Mursula, Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951-2004, J. Geophys. Res.,101, A12108, 2005.
  98. K. O'Brien, The theory of cosmic-ray and high-energy solar-particle transport in the atmosphere, Radioact. Envir., 7, 29-44, 2005.
  99. D'Andrea, C., and J. Poirier, Ground level muons coincedent with the 20 January 2005 solar flare, Geophys. Res. Lett., 32, L14102, 2005.
  100. Singh, M., Badruddin, Study of the Cosmic Ray Diurnal Anisotropy During Different Solar and Magnetic Conditions, Solar Phys., 233, 291, 2006.
  101. Kuznetsov, S.N., et al., Changes of geomagnetic transmissivity in the disturbed magnetosphere: ground-based and CORONAS-F observations, Czechoslovak Journal of Physics, 56, 2006.
  102. Simnett G.M., The timing of relativistic proton acceleration in the 20 January 2005 flare, Astron. & Astrophys. 445, 715-724, 2006.
  103. Cliver, E.W., The Unusual Relativistic Solar Proton Events of 1979 August 21 and 1981 May 10, Astrophys. J., 639, 1206-1217, 2006.
  104. L3 collaboration, The solar flare of the 14th of July 2000 (L3+C detector results), Astron. & Astrophys. 445, 351-357, 2006.
  105. Wissmann, F., Long-Term Measurements Of H*(10) At Aviation Altitudes In The Northern Hemisphere, Radiation Protection Dosimetry, 121, 347-357, 2006.
  106. Wissmann, F. , Variations observed in environmental radiation at ground level, Radiat. Protect. Dosim., 118 (1), 3-10, 2006.
  107. Bombardieri, D. J., et al., Relativistic Proton Production during the 2000 July 14 Solar Event: The Case for Multiple Source Mechanisms, Astrophysical Journal, 644, 565-574, 2006.
  108. Alanko-Huotari, K., Mursula, K., Usoskin, I. G., Kovaltsov, G. A., Global Heliospheric Parameters and Cosmic-Ray Modulation: An Empirical Relation for the Last Decades, Solar Phys., 238, 391, 2006.
  109. Mishra, A.P., Meera Gupta, and V. K. Mishra, Cosmic Ray Intensity Variations in Relation with Solar Flare Index and Sunspot Numbers, Solar Phys., 239, 475, 2006.
  110. Meera Gupta., V. K. Mishra, A. P. Mishra, Long-term Modulation of Cosmic Ray Intensity in relation to Sunspot Numbers and Tilt Angle, J. Astrophys. Astr., 27, 455, 2006
  111. Perez-Enriquez, R., et al. The G Index of Interplanetary Scintillation Data and Its Relation to Forbush Decreases During 1991-1994, Soar Phys., 236, 389-397, 2006
  112. Simnett, G. M., The timing of relativistic proton acceleration in the 20 January 2005 flare, Astron. Astrophys. 445, 715-724, 2006
  113. L.W. Jones, Cosmic ray studies with the L3-cosmics program at CERN, Czech. J. Phys., 56, A201-A210, 2006
  114. R.K. Mishra and R. A. Mishra, Characteristics of Enhanced and Low Amplitude Anisotropic Wave Trains and Interplanetary Transients Astrophys. Space Sci., 305, 73-83, 2006
  115. Plainaki, C. et al., Modeling ground level enhancements: Event of 20 January 2005, J. Geophys. res., 112, A04102, 2007.
  116. Badruddin, et al., Modulation loops, time lag and relationship between cosmic ray intensity and tilt of the heliospheric current sheet, Astron. Astrophys., 466, 697, 2007.
  117. Singh, Y.P., Badruddin, Corotating high-speed solar-wind streams and recurrent cosmic ray modulation, J. Geophys. Res. 112, A05101, 2007.
  118. Mavromichalaki, H., E. Paouris, T. Karalidi, Cosmic-Ray Modulation: An Empirical Relation with Solar and Heliospheric Parameters, Solar Phys., 245, 369-390, 2007.
  119. O. Ploc, F. Spurny, Further analysis of long-term measurements on board of Czech airlines aircraft Nucl. Instrum. Meth. Phys. Res. A, 580, 671-674, 2007
  120. A. B. Struminsky, Intensity enhancements of 200-2000 MeV protons in 1997-2005 as measured by the KET/ULYSSES, Cosmic Res., 45, 368-372, 2007
  121. E. V. Vashenyuk, Yu. V. Balabin, B. B. Gvozdevsky and L. I. Miroshnichenko, Characteristics of relativistic solar cosmic rays in large ground-level events in 1956-2005, Bull. Russian Acad. Sci.: Phys., 71, 933-937, 2007
  122. S. A. Starodubtsev, A. V. Grigor'ev, V. G. Grigor'ev, I. G. Usoskin and K. Mursula, Fluctuations of cosmic rays and interplanetary magnetic field in the vicinity of interplanetary shock fronts Bull. Russian Acad. Sci.: Phys., 71, 991-993, 2007
  123. D. V. Blagoveshchensky and V. A. Kornienko, Studying the ionosphere with the incoherent scatter radar during the magnetic storm of January 10, 1997, Geomagn. Aeronom. 47, 227-237, 2007
  124. V. I. Kozlov and V. V. Markov, Wavelet image of the fine structure of the 11-year cycle based on studying cosmic ray fluctuations during cycles 20-23, Geomagn. Aeronom. 47, 43-51, 2007.
  125. Jamsen, T., Usoskin, I.G., Raiha, T., Sarkamo, J., Kovaltsov, G.A., Case study of Forbush decreases: Energy dependence of the recovery, Adv. Space Res., 40 (3), 342-347, 2007.
  126. Alanko-Huotari, K., Usoskin, I.G., Mursula, K., Kovaltsov, G.A., Cyclic variations of the heliospheric tilt angle and cosmic ray modulation, Adv. Space Res., 40 (7), 1064-1069, 2007.
  127. V. E. Timofeev, L. I. Miroshnichenko, S. N. Samsonov and N. G. Skryabin, Variations of the interplanetary magnetic field and the electron and cosmic-ray intensities under the influence of Jupiter Astron. Lett., 33, 63-66, 2007
  128. Oh, S.Y., Y. Yi, Y.H. Kim, Globally nonsimultaneous Forbush decrease events and their implications, J. Geophys. Res., 113, A01103, 2008
  129. Usoskin, I.G., I. Braun, O.G. Gladysheva, J.R. Hoerandel, T. Jamsen, G.A. Kovaltsov, and S.A. Starodubtsev, Forbush decreases of cosmic rays: Energy dependence of the recovery phase, J. Geophys. Res., 113, A07102, 2008.
  130. Vashenyuk, E. V., Yu.V. Balabin, B.B. Gvozdevsky, L.I. Shchur, Characteristics of relativistic solar cosmic rays during the event of December 13, 2006, Geomagn. Aeronom., 48, 149-153, 2008.
  131. Agarwal, R., R. K. Mishra, Solar cycle phenomena in cosmic ray intensity up to the recent solar cycle Phys. Lett. B, 664, 31-34, 2008.
  132. Wang, R.G., F.R. Zhu, Inspiration from relativistic solar cosmic ray events Nuclear Phys. B - Proc. Suppl., 175, 563-566, 2008.
  133. V.I. Kozlov and V. V. Kozlov, A new index of solar activity: An index of cosmic ray scintillation, Geomagn. Aeronom., 48, 463-471, 2008.
  134. G. A. Bazilevskaya and A. K. Svirzhevskaya, Arrival of the first relativistic solar protons and conditions in the solar corona, Geomagn. Aeronom., 48, 425-431, 2008.
  135. Bazilevskaya, G.A., I.G. Usoskin, E. O. Flueckiger, R. G. Harrison, L. Desorgher, R. Buetikofer, M. B. Krainev, V.S. Makhmutov, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky and G.A. Kovaltsov, Cosmic Ray Induced Ion Production in the Atmosphere, Space Sci. Rev., 137, 149-173, 2008.
  136. Grigoryev, A.V., Starodubtsev, S.A., Grigoryev, V.G., Usoskin, I.G., Mursula, K., Fluctuations of cosmic rays and IMF in the vicinity of interplanetary shocks, Adv. Space Res., 41 (6), 955-961, 2008.
  137. M. Poje, B. Vukovic, M. Varga, V. Radolic, I. Miklavcic, D. Faj, J. Planinic, Relation between galactic and solar cosmic radiation at aviation altitude, Adv. Space Res., 42, 1913-1916, 2008.
  138. R. Buetikofer, E.O. Flueckiger, L. Desorgher, M.R. Moser, The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude, Sci. Total Envir., 177-183, 2008.
  139. M. Storini, P. Metteo, G. Moreno, Effects of geomagnetic secular variations on cosmic ray access to the terrestrial environment, Adv. Space Res., 41, 70-75, 2008.
  140. A. Wawrzynczak, M.V. Alania, Modeling of the recurrent Forbush effect of the galactic cosmic ray intensity and comparison with the experimental data, Adv. Space Res., 41, 325-334, 2008.
  141. Jorge A. Perez-Peraza, Eduard V. Vashenyuk, et al., Relativistic proton production at the Sun in the 20 January 2005 solar event, Adv. Space Res., 41, 947-954, 2008.
  142. M. Singh, Y.P. Singh, Badruddin, Solar modulation of galactic cosmic rays during the last five solar cycles, Adv. Space Rev., J. Atmos. Solar-Terr. Phys., 70, 169-183, 2008.
  143. I.G. Usoskin, G.A. Kovaltsov, Cosmic rays and climate of the Earth: Possible connection, Compt. Rend. Geosci., 340, 441-450, 2008.
  144. D.J. Bombardieri, M. L. Duldig, J. E. Humble, and K. J. Michael, An Improved Model for Relativistic Solar Proton Acceleration Applied to the 2005 January 20 and Earlier Events, Ap. J., 682, 1315-1327, 2008.
  145. K. Kudela, R. Bucik, P. Bobik, On transmissivity of low energy cosmic rays in disturbed magnetosphere, Adv. Space Res., 42, 1300-1306, 2008
  146. D.A. Timashkov, Yu.V. Balabin, N.S. Barbashina, et al., Ground level enhancement of December 13, 2006 observed by means of muon hodoscope, Astroparticle Phys., 30, 117-123, 2008.
  147. Kyle Copeland, Herbert H. Sauer, Frances E. Duke, Wallace Friedberg, Cosmic radiation exposure of aircraft occupants on simulated high-latitude flights during solar proton events from 1 January 1986 through 1 January 2008, Adv. Space Res., 42, 1008-1029, 2008
  148. Zhi-Juan Lai, Bing-Sen Xue, Fluxes of Space Protons and Ions from Inversion of Ground Cosmic-ray Neutron Intensities, Chin. Astron. Astrophys., 32, 268-276, 2008.
  149. Rekha Agarwal, Rajesh K. Mishra, Solar cycle phenomena in cosmic ray intensity up to the recent solar cycle, Phys. Lett. B., 664, 31-34, 2008.
  150. E. Stoupel, A. Assali, I. Teplitzky, et al., The culprit artery in acute myocardial infarction in different environmental physical activity levels, Internat. J. Cardiol., 126, 288-290, 2008.
  151. E. Stoupel, E. Birk, A. Kogan, Congenital heart disease: Correlation with fluctuations in cosmophysical activity, 1995-2005, Intern. J. Cardiol., 135, 207-210, 2009.
  152. C. Plainaki, H. Mavromichalaki, A. Belov, E. Eroshenko and V. Yanke, Neutron monitor asymptotic directions of viewing during the event of 13 December 2006, Adv. Space Res., 43, 518-522, 2009.
  153. C. Plainaki, H. Mavromichalaki, A. Belov, E. Eroshenko, V. Yanke, Modeling the solar cosmic ray event of 13 December 2006 using ground level neutron monitor data Adv. Space Res., 43, 474-479, 2009.
  154. B. Heber, A. Kopp, J. Gieseler, et al., Modulation of galactic cosmic ray protons and electrons during an unusual solar minimum, Astrophys. J., 699, 1956, 2009.
  155. D. Matthia, B. Heber, G. Reitz, et al., The ground level event 70 on December 13th, 2006 and related effective doses at aviation altitudes, Rad. Prot. Dosim., 141, 2009.
  156. E.A. Sigaeva, O.Yu. Nechaev, M.I. Panasyuk, A.V. Bruns, O.A. Troshichev, Thermal neutrons' response to the GLEs Adv. Space Res., 43, 649-653, 2009.
  157. D. A. Timashkov, Yu. V. Balabin, N. S. Barbashina, et al., Detection of GLE of December 13, 2006, using the muon hodoscope, Bulletin Russian Acad. Sci. Phys., 703, 309, 2009.
  158. G. Souvatzoglou, H. Mavromichalaki, C. Sarlanis, et al., Real-time GLE alert in the ANMODAP Center for December 13, 2006, Adv. Space Res., 43, 728-734, 2009.
  159. Vivek Gupta and Badruddin, Solar magnetic cycle dependence in corotating modulation of galactic cosmic rays, Astrophys. Space Sci., 321, 185, 2009.
  160. Keller, P.E., R.T. Kouzes, R.T., Influence of Extraterrestrial Radiation on Radiation Portal Monitors, IEEE Trans. Nuc. Sci., 56, 1575, 2009.
  161. S. Masson, K.-L. Klein, R. Buetikofer, et al., Acceleration of Relativistic Protons During the 20 January 2005 Flare and CME, Solar Phys., 257, 305, 2009.
  162. Reames, D.V., Solar release times of energetic particles in ground-level events, Astrophys. J., 693, 812, 2009.
  163. A. Bruno, F.S. Cafagna, Marco Ricci, et al., Cosmic ray measurements with Pamela experiment, Nucl. Phys. B Proc. Suppl., 190, 293, 2009.
  164. R. Buetikofer, E.O. Flueckiger, L. Desorgher, M.R. Moser, B. Pirard, The solar cosmic ray ground-level enhancements on 20 January 2005 and 13 December 2006, Adv. Space Res., 43, 499-503, 2009.
  165. A.S. Asipenka, A.V. Belov, E.A. Eroshenko, E.G. Klepach, V.A. Oleneva, V.G. Yanke, Interactive database of cosmic ray anisotropy (DB-A10), Adv. Space Res., 43, 708-716, 2009.
  166. G.A. Bazilevskaya, On the early phase of relativistic solar particle events: Are there signatures of acceleration mechanism? Adv. Space Res., 43, 530-536, 2009.
  167. H.S. Ahluwalia, R.C. Ygbuhay, M.L. Duldig, Two intense Forbush decreases of solar activity cycle 22, Adv. Space Res., 44, 58-63, 2009.
  168. A. Papaioannou, A. Belov, H. Mavromichalaki, E. Eroshenko, V. Oleneva, The unusual cosmic ray variations in July 2005 resulted from western and behind the limb solar activity Adv. Space Res., 43, 582-588, 2009.
  169. Ruiguang Wang, Did the 2000 July 14 solar flare accelerate protons to >40 GeV? Astropart. Phys., 31, 149-155, 2009.
  170. M. Casolino, N. De Simone, M.P. De Pascale, et al., Cosmic ray measurements with Pamela experiment, Nucl. Phys. B - Proc. Suppl., 190, 293-299, 2009.
  171. T. de Wit Dudok, A.A. Chilingarian and G.G. Karapetyan, Techniques for characterizing weak transients in cosmic ray records, as measured by neutron monitor networks, Acta Geophys., 57, 102-115, 2009
  172. Meier, M., M. Hubiak, D. Matthia, M. Wirtz and G. Reitz, Dosimetry at aviation altitudes (2006-2008), Radiat. Protect. Dosim., 136, 251-255, 2009.
  173. Oh, S. Y.; Yi, Y., Statistical reality of globally nonsimultaneous Forbush decrease events, J. Geophys. Res., 114, A11102, 2009.
  174. H. Mavromichalaki, M. Gerontidou, G. Mariatos, etal., Athens Neutron Monitor Data Processing Center - ANMODAP Center, Adv. Space Res., 44, 1237-1246, 2009.
  175. E. O. Flueckiger, R. Buetikofer, Swiss neutron monitors and cosmic ray research at Jungfraujoch Adv. Space Res., 44, 1155-1159, 2009.
  176. J. Szabelski and the Carpet-3 collaboration, Carpet-3 - a new experiment to study the primary composition around the knee Nucl. Phys. B - Proc. Suppl., 196, 371-374, 2009.
  177. M.A. Shea, Cosmic rays from past to present Adv. Space Res., 44, 1079-1080, 2009.
  178. R. Agarwal and R.K. Mishra, Galactic cosmic ray modulation during last four solar cycles, 31 ICRC, icrc0015, 2009.
  179. R. Mishra, R. Agarwal and S. Tiwari, Solar cycle dependence of cosmic ray intensity and interplanetary parameters, 31 ICRC, icrc0019, 2009.
  180. P. Diego and M. Storini, Modulation Signatures on Cosmic-ray Periodicities Before a Forbush Decrease, 31 ICRC, icrc0044, 2009.
  181. P.L. Verma,G.P.Agrawal,R.J.Prajapati, et al., Forbush Decreases In Relation with Halo and Partial Halo Coronal Mass Ejections and Storms in Solar Wind Plasma Parameters, 31 ICRC, icrc0082, 2009.
  182. I.Sabbah, K. Kudela, On quasi-periodicities in cosmic rays and their relationship to those in solar, interplanetary and geomagnetic activity, 31 ICRC, icrc0134, 2009.
  183. M. Rybansky, K. Kudela, M. Minarovjech, Solar corona and cosmic rays 1953 - 2008, 31 ICRC, icrc0135, 2009.
  184. I. Usoskin, A.J. Tylka, Ge.A. Kovaltsov, W.F. Dietrich, Ionization effect of strong solar particle events: Low-middle atmosphere, 31 ICRC, icrc0162, 2009.
  185. S.Starodubtsev, I. Usoskin and K. Mursula, Solar cycle variation of rapid fluctuations of energetic particles at the geostationary orbit, 31 ICRC, icrc0194, 2009.
  186. P.L.Verma, R.K.Tiwari, Yash Kumar et al., Halo Coronal mass Ejections: The Cause of Large Forbush Decreases and Geomagnetic Storms, 31 ICRC, icrc0198, 2009.
  187. S. Kahler and G. Simnett, ICMEs as Sources of Non-recurrent Forbush Decreases, 31 ICRC, icrc0265, 2009.
  188. I.Petukhov, S. Petukhov, Calculated dynamics of the cosmic ray intensity pre-decrease in the 9 September 1992 event, 31 ICRC, icrc0328, 2009.
  189. M.Chauhan, S.K.Shrivastava and M.K.Richharia, Study of Hysteresis Effect between Cosmic Ray Intensity and Solar Indices, 31 ICRC, icrc0566, 2009.
  190. A. Wawrzynczak, M.V. Alania, Model of the Forbush decrease of the galactic cosmic ray intensity with the spatial dependent solar wind velocity and comparison with the experimental data, 31 ICRC, icrc0584, 2009.
  191. B.Yushkov, V.G. Kurt, and A.V. Belov, Appearance of high-energy protons at the Sun and the GLE onset, 31 ICRC, icrc0590, 2009
  192. H. Mavromichalaki, A. Papaioannou, M. Gerontidou, et al., Solar Particle Event Analysis using the ESA Standard Radiation Environment Monitor and the Worldwide Neutron Monitor Network, 31 ICRC, icrc0611, 2009.
  193. A. Gil, M.V. Alania, On the rigidity spectrum of the 27-day variation of the galactic cosmic ray intensity in different epochs of solar activity, 31 ICRC, icrc0618, 2009.
  194. A. Chilingarian and B. Mail, Investigation of Daily Variations of Cosmic Ray Fluxes in the Beginning of 24th Solar Activity Cycle, 31 ICRC, icrc0674, 2009.
  195. A.Chilingarian, T. Karapetyan and B. Mailyan, Calculation of the barometric coefficients for the particle detectors belonging to the world-wide networks at the start of the 24th solar activity cycle, 31 ICRC, icrc0675, 2009.
  196. N. De Simone, O. Adriani, G. C. Barbarino, et al., Study of protons of solar origin in the events of 13 and 14 December 2006 with Pamela detector, 31 ICRC, icrc0794, 2009.
  197. A. V. Belov, E. A. Eroshenko, O. N. Kryakunova, V. G. Kurtz and V. G. Yanke, GLEs in the last three solar cycles, 31 ICRC, icrc0993, 2009.
  198. Asipenka A., Belov A., Gushchina R., et al., Estimation of detectors stability of the neutron monitors network, 31 ICRC, icrc1031, 2009.
  199. Berkova M., Korotkov V., Basalayev M., et al., Snow effect and practical questions of how to take it into account, 31 ICRC, icrc1076, 2009.
  200. A. Asipenka, A. Belov, E. Eroshenko, et al., Definition of cosmic ray density and anisotropy beyond the magnetosphere in real time mode, 31 ICRC, icrc1106, 2009.
  201. K. Kudela, H. Mavromichalaki, A. Papaioannou et al., On mid-term periodicities in cosmic rays: utilizing the NMDB archive, 31 ICRC, icrc1126, 2009.
  202. K. Klein, N. Fuller, C.T. Steigies et al., WWW.NMDB.EU: The real-time Neutron Monitor database, 31 ICRC, icrc1333, 2009.
  203. H. Mavromichalaki, G. Souvatzoglou, C. Sarlanis et al., Using the real-time Neutron Monitor Database to establish an Alert signal, 31 ICRC, icrc1381, 2009.
  204. J. Perez-Peraza, V. M. Velasco, J. Zapotitla, E.V. Vashenyuk and L.I. Miroshnichenko, Pulses with Modulation Analysis of Ground Level Proton Events, 31 ICRC, icrc1411, 2009.
  205. M. Andriopoulou., H. Mavromichalaki, C. Plainaki, A. Belov and E. Eroshenko, Properties of the extreme solar particle events of the cycles 22 and 23, 31 ICRC, icrc1529, 2009.
  206. H. Moraal, J.P.L. Reinecke, and K.G. McCracken, The Ground Level Enhancements of Solar Cycle 23, 31 ICRC, icrc1553, 2009.
  207. I.G. Usoskin, I.A. Mironova, M. Korte, G.A. Kovaltsov, Regional millennial trend in the cosmic ray induced ionization of the troposphere J. Atmos. Solar-Terr. Phys., 72, 19-25, 2010.
  208. Oh, S., Y. Yi, J. Bieber, Modulation Cycles of Galactic Cosmic Ray Diurnal Anisotropy Variation, Solar Phys., 262, 199-212, 2010.
  209. Chowdhury, P., M. Khan, P.C. Ray, Evaluation of the short and intermediate term periodicities in cosmic ray intensity during solar cycle 23, Planet. Space Sci., 58, 1045-1049, 2010.
  210. Herbst, K., A. Kopp, B. Heber, F. Steinhilber, H. Fichtner, K. Scherer, and D. Matthia, On the importance of the local interstellar spectrum for the solar modulation parameter, J. Geophys. Res., 115, D00I20, 2010.
  211. K. Kudela, H. Mavromichalaki, A. Papaioannou, M. Gerontidou, On Mid-Term Periodicities in Cosmic Rays, Solar Phys., 266, 173-180, 2010.
  212. Wissmann, F., M. Reginatto, and T, Moeller, The ambient dose equivalent at flight altitudes: a fit to a large set of data using a Bayesian approach, J. Radilog. Protection, 30, 513-524, 2010.
  213. Oh, S.Y., Y. Li, J.W.Bieber, P. Evenson, Y.K. Kim, Characteristics of solar proton events associated with ground level enhancements, J. Geophys. Res., 115, A10107, 2010.
  214. Meier, M., M. Hubiak, Measurements of the radiation quality factor Q at aviation altitudes during solar minimum (2006-2008), Adv. Space Res.,, 45, 1178-1181, 2010.
  215. M. Andriopoulou, H. Mavromichalaki, C. Plainaki, A. Belov and E. Eroshenko, Intense Ground-Level Enhancements of Solar Cosmic Rays During the Last Solar Cycles, Solar Phys., DOI 10.1007/s11207-010-9678-1, 2010.
  216. Moraal, H. and P.H. Stocker, Long-term neutron monitor observations and the 2009 cosmic ray maximum, J. Geophys. Res., 115, A12109, 2010.
  217. Firoz, K.A. J. Hwang, I. Dorotovic, T. Pinter and Subhash C. Kaushik, Relationship of ground level enhancements with solar, interplanetary and geophysical parameters, Astrophys. Space Sci., , 331, 469, 2010.
  218. Firoz, K. A., K.-S. Cho, J. Hwang, et al., Characteristics of ground-level enhancement-associated solar flares, coronal mass ejections, and solar energetic particles, J. Geophys. Res., 115, A09105, 2010.
  219. Ahluwalia, H.S., C. Lopate, R.C. Ygbuhay, and M.L. Duldig, Galactic cosmic ray modulation for sunspot cycle 23, Adv. Space Res., 46, 934, 2010.
  220. Miyahara, H., K. Kitazawa, K. Nagaya, et al., Is the Sun Heading for Another Maunder Minimum? Precursors of the Grand Solar Minima, J. Cosmol., 8, 1970-1982, 2010.
  221. Lockwood, M., Solar change and climate: an update in the light of the current exceptional solar minimum, Proc. R. Soc. A, 466, 303, 2010.
  222. Wawrzynczak, A., M.V. Alania, Modeling and data analysis of a Forbush decrease, Adv. Space Res., 45, 622, 2010.
  223. Ahluwalia, H.S., M. M. Fikani, R. C. Ygbuhay, Rigidity dependence of 11 year cosmic ray modulation: Implication for theories. J. Geophys. Res., 115, A07101, 2010.
  224. Gil, A., M.V. Alania, The rigidity spectrum of the harmonics of the 27-day variation of the galactic cosmic ray intensity in different epochs of solar activity: 1965-2002, J. Atmos. Solar-Terr. Phys., 2010.
  225. Belov, A.V., E. A. Eroshenko, O. N. Kryakunova, V. G. Kurt and V. G. Yanke, Ground level enhancements of solar cosmic rays during the last three solar cycles, Geomag. Aeronom., 50, 21, 2010.
  226. Mailyan, B., A. Chilingarian, Investigation of diurnal variations of cosmic ray fluxes measured with using ASEC and NMDB monitors, Adv. Space Res., 45, 1380, 2010.
  227. Yu, X., H. Lu, G. M. Le and F. Shi, Influence of Magnetic Clouds on Variations of Cosmic Rays in November 2004, Solar Phys., 263, 223, 2010.
  228. S. A. Starodubtsev and I. G. Usoskin, Fluctuations of energetic particle flux during solar cycle based on measurements in the solar wind, in the magnetosphere, and at Earth, Astron. Lett., 36, 438, 2010.
  229. Kurt, V.G., B. Yu. Yushkov and A. V. Belov, On the ground level enhancement beginning, Astron. Lett., 36, 520, 2010.
  230. Plainaki, C., H. Mavromichalaki, A. Belov, E. Eroshenko, M. Andriopoulou and V. Yanke, A New Version of the Neutron Monitor Based Anisotropic GLE Model: Application to GLE60, Solar Phys., 264, 239, 2010.
  231. Dudok de Wit, Th., J. Watermann, Solar forcing of the terrestrial atmosphere, Comptes Rendus Geosci., 342, 259, 2010.
  232. Tereshchenko, E. D., Scientific investigations by the Polar Geophysical Institute on the Spitsbergen archipelago, Geomag. Aeron., 50, 554-567, 2010.
  233. Stoupel, E., E. Abramson, P. Israelevich, M. Shohat, J. Sulkes, Gender and environment: general and monthly gender distribution of newborns and cosmophysical parameters, Health, 2, 639-644.2010.
  234. Mavromichalaki H., G. Souvatzoglou, C. Sarlanis et al., Implementation of the ground level enhancement alert software at NMDB database, New Astron., 15, 744-748, 2010.
  235. Jenkins, J.H., D.W. Mundy, E. Fischbach, Analysis of environmental influences in nuclear half-life measurements exhibiting time-dependent decay rates, Nucl. Instr. Meth. Phys. Res. A, 620, 332-342, 2010.

    2011

  236. Andriopoulou, M., H. Mavromichalaki, C. Plainaki, A. Belov, E. Eroshenko, Intense Ground-Level Enhancements of Solar Cosmic Rays During the Last Solar Cycles, Solar Phys., 269, 155, 2011.
  237. Partha Chowdhury, B.N. Dwivedi, P.C. Ray, Solar modulation of galactic cosmic rays during 19-23 solar cycles, New Astronomy, 16, 430-438, 2011.
  238. Kozlov, V.I., Kozlov, V.V., Galactic cosmic ray fluctuation parameter as an indicator of the degree of magnetic field inhomogeneity, Geomagnet. Aeronom., 51, 187-197, 2011.
  239. Borog, V.V.; Kryanev, A. V.; Udumyan, D. K., Combined method for detecting hidden anomalies in galactic cosmic ray variations, Geomagnet. Aeronom., 51, 475-482, 2011.
  240. Abbrescia, M., et al., Observation of the February 2011 Forbush decrease by the EEE telescopes, Europ. Phys. J. Plus, 126, article id. #61, 2011.
  241. Ahluwalia, H. S.; Ygbuhay, R. C., The onset of sunspot cycle 24 and galactic cosmic ray modulation, Adv. Space Res., 48, 61-64, 2011.
  242. Dachev, T. P., et al., Space Shuttle drops down the SAA doses on ISS, Adv. Space Res., 48, 2030-2038, 2011.
  243. Okike, O.; Collier, A. B., A multivariate study of Forbush decrease simultaneity, J. Atmos. Solar-Terr. Phys., 73, 796-804, 2011.
  244. Chowdhury, Partha; Dwivedi, B. N., Periodicities of Sunspot Number and Coronal Index Time Series During Solar Cycle 23, Solar Phys., 270, 365-383, 2011.
  245. Urbar, J.; Scheirich, J.; Jakubek, J., Medipix/Timepix cosmic ray tracking on BEXUS stratospheric balloon flights, Nucl. Inst. Meth. Phys. Res. A, 633, S206-S209, 2011.
  246. Korotkov, V. K.; Berkova, M. D.; Belov, A. V.; Eroshenko, E. A.; Kobelev, P. G.; Yanke, V. G., Effect of snow in cosmic ray variations and methods for taking it into consideration, Geomagnet. Aeronom., 51, 247-253, 2011.
  247. Chilingarian, A.; Karapetyan, T., Calculation of the barometric coefficients at the start of the 24th solar activity cycle for particle detectors of Aragats Space Environmental Center, Adv. Space Res., 47, 1140-1146, 2011.
  248. Firoz, K. A.; Hwang, J.; Dorotovic, I.; Pinter, T.; Kaushik, Subhash C., Relationship of ground level enhancements with solar, interplanetary and geophysical parameters, Astrophys. Space Sci., 331, 469-484, 2011.
  249. Gil, A.; Alania, M. V., The rigidity spectrum of the harmonics of the 27-day variation of the galactic cosmic ray intensity in different epochs of solar activity: 1965-2002, J. Atmos. Solar-Terr. Phys., 73, 294-299, 2011.
  250. A. G. Maiorov, O. Adriani, G. Barbarino, G. A. Bazilevskaia and R. Bellotti, et al., Solar modulation of the spectra of protons and helium nuclei in the PAMELA experiment, Bull. Rus. Ac. Sci. Phys., 75, 779-781, 2011.
  251. G. A. Bazilevskaya, M. B. Krainev, V. S. Makhmutov, A. K. Svirzhevskaya and N. S. Svirzhevsky, et al., Features of cosmic ray variation at the phase of the minimum between the 23rd and 24th solar cycles, Bull. Rus. Ac. Sci. Phys., 75, 782-785, 2011.
  252. A. Malusek, O. Ploc, I. Kovar, K. Brabcova and F. Spurny, Routine individual monitoring of aircraft crew exposure; Czech experience and results 1998-2008, Radiat. Prot. Dosim., 144, 684-687, 2011.
  253. M. Andriopoulou, H. Mavromichalaki, P. Preka-Papadema, C. Plainaki, A. Belov, and E. Eroshenko, Solar activity and the associated ground level enhancements of solar cosmic rays during solar cycle 23, Astrophys. Space Sci. Trans., 7, 439-43, 2011.
  254. Usoskin, I.G., G.A. Bazilevskaya, and G.A. Kovaltsov, Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers, J. Geophys. Res., 116, A02104, 2011.
  255. Mavromichalaki, H., et al. (34 authors), Applications and usage of the real-time Neutron Monitor Database, Adv. Space. Res., 47, 2210-2222, 2011.
  256. Firoz, K.A., Y.J. Moon, K.S. Cho, J. Hwang, Y.D. Park, K. Kudela, and L.I. Dorman, On the relationship between ground level enhancement and solar flare, J. Geophys. Res., 116, A04101, 2011.
  257. Jothe, M. K, and P.K. Shrivastava, Effects of recent solar events on cosmic rays and Earth's geomagnetic field, Indian J. Radio Space Phys., 40, 179-182, 2011.
  258. Perez-Peraza, J.A., V.M. Velasco-Herrera, J. Zapotitla, L. I. Miroshnichenko and E. V. Vashenyuk, Search for periodicities in galactic cosmic rays, sunspots and coronal index before arrival of relativistic protons from the sun, Bull. Rus. Ac. Sci. Phys., 75, 767-769, 2011.
  259. M.A. El-Borie, N.A. Aly, A. El-Taher, Mid-term periodicities of cosmic ray intensities, J. Adv. Res., 2, 137-147, 2011.
  260. Badavi, F., A low earth orbit dynamic model for the proton anisotropy validation, Nucl. Inst. Meth. Phys. Res. B, 269, 2614-2622, 2011.
  261. Badavi, F., Nealy, J.E., and J.W. Wilson, The Low Earth Orbit validation of a dynamic and anisotropic trapped radiation model through ISS measurements, Adv. Space Res., 48, 1441-1458, 2011.
  262. Agarwal, R., and R. K. Mishra, Galactic Cosmic Ray Modulation Up to Recent Solar Cycles, Latvian J. Phys. Tech. Sci., 48, 66-70, 2011.
  263. Stoupel, E. R. Kalediene, J. Petrauskiene, et al., Twenty years study of solar, geomagnetic, cosmic ray activity links with monthly deaths number (n-850304), J. Biomed. Sci. Engin., 4, 426-434, 2011.
  264. Tsurutani, B.T., E. Echer, and W. D. Gonzalez, The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields, Ann. Geophys., 29, 839-849, 2011.
  265. Usoskin, I.G., G. A. Kovaltsov, I. A. Mironova, A. J. Tylka, and W. F. Dietrich, Ionization effect of solar particle GLE events in low and middle atmosphere, Atmos. Chem. Phys., 11, 1979-1988, 2011.
  266. T. Pinttr, M. Rybansky, K. Kudela, I. Dorotovic, Peculiarities in Evolutions of Cosmic Radiation Level after Sudden Decreases, Sun Geospher., 6, 19-22, 2011.
  267. Jordan, A. P., H. E. Spence, J. B. Blake, and D. N. A. Shaul, Revisiting two-step Forbush decreases, J. Geophys. Res., 116, A11103, 2011.

    2012

  268. S. Y. Oh and Y. Yi, A Simultaneous Forbush Decrease Associated with an Earthward Coronal Mass Ejection Observed by STEREO, Solar Phys., 280, 197, 2012.
  269. E. Paouris, H. Mavromichalaki, A. Belov, R. Gushchina and V. Yanke, Galactic Cosmic Ray Modulation and the Last Solar Minimum, Solar Phys., 280, 255, 2012.
  270. Reitz, G., T. Berger, D. Matthiae, Radiation exposure in the moon environment, Planet. Space Sci., 74, 78, 2012.
  271. McCracken, K., H. Moraal, M.A. Shea, The high-energy impulsive ground-level enhancement, Astrophys. J., 761, art.ID 101, 2012.
  272. Nitta, N. V., Liu, Y., DeRosa, M. L., Nightingale, R. W., What Are Special About Ground-Level Events?. Flares, CMEs, Active Regions and Magnetic Field Connection, Space Sci. Rev., 171, 61, 2012.
  273. Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Makela, P., Usoskin, I. G., Properties of Ground Level Enhancement Events and the Associated Solar Eruptions During Solar Cycle 23, Space Sci. Rev., 171, 23, 2012.
  274. Firoz, Kazi A., Gan, W. Q., Moon, Y.-J., LI, C., An Interpretation of the Possible Mechanisms of Two Ground-level Enhancement Events Astrophys. J., 758, 119, 2012.
  275. Maghrabi, A. H., Al Harbi, H., Al-Mostafa, Z. A. et al., The KACST muon detector and its application to cosmic-ray variations studies, Adv. Space Res., 50, 700, 2012.
  276. Mrigakshi, A., Matthia, D., Berger, T., et al., Assessment of galactic cosmic ray models, J. Geophys. Res., 117, A08109, 2012.
  277. Dachev, Ts. P., Tomov, B. T., Matviichuk, Yu. N. et al., Relativistic electron fluxes and dose rate variations during April-May 2010 geomagnetic disturbances in the R3DR data on ISS, Adv. Space Res., 50, 282, 2012.
  278. Lockwood, M., Owens, M., Barnard, L. et al., Solar cycle 24: what is the Sun up to? Astron. Geophys., 53, 3.09, 2012.
  279. Davis, C. J., Davies, J. A., Owens, M. J., Lockwood, M., Predicting the arrival of high-speed solar wind streams at Earth using the STEREO Heliospheric Imagers, Space Weather, 10, S02003, 2012.
  280. Ahluwalia, H. S., Ygbuhay, R. C., Is there an instrumental drift in the counting rate of some high latitude neutron monitors? Adv. Space Res., 49, 493, 2012.
  281. Mironova, I. A., Usoskin, I. G., Kovaltsov, G. A., Petelina, S. V., Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence, Atmos. Chem. Phys., 12, 769, 2012.
  282. Rycroft, M. J., Nicoll, K. A., Aplin, K. L., Giles H. R., Recent advances in global electric circuit coupling between the space environment and the troposphere, J. Atmos. Solar-Terr. Phys., 90, 198, 2012.
  283. Vargas C., Valdes-Galicia, J.F., Identification of high energy solar particle signals on the Mexico City neutron monitor database, Adv. Space Res., 49, 1593, 2012.
  284. Usoskin, I. G., Kovaltsov, G. A., Occurrence of Extreme Solar Particle Events: Assessment from Historical Proxy Data, Astrophys. J., 757, 92, 2012.
  285. Singha, Y.P., Shweta Gautam, Badruddin, Temporal variations of short- and mid-term periodicities in solar wind parameters and cosmic ray intensity, J. Atmos. Solar-Terr. Phys., 89, 48, 2012.
  286. Gil, A., M. Alania, Cycling Changes in the Amplitudes of the 27-Day Variation of the Galactic Cosmic Ray Intensity, Sol. Phys., 278, 447, 2012.
  287. Matthiae, D., T Berger, A.I. Mrigakshi, G. Reitz, A Ready-to-Use Galactic Cosmic Ray Model, Adv. Space Res., 2012.
  288. Miroshnichenko, L.I., J. A. Perez-Peraza, V. M. Velasco-Herrera, J. Zapotitla, E. V. Vashenyuk, Oscillations of galactic cosmic rays and solar indices before the arrival of relativistic solar protons, Geomagnet. Aeronom., 52, 547, 2012.
  289. Aslam, O.P.M., Badruddin, Solar Modulation of Cosmic Rays during the Declining and Minimum Phases of Solar Cycle 23: Comparison with Past Three Solar Cycles, Solar Phys., 279, 269, 2012.
  290. Mishev, A.L., P.I.Y. Velinov, L. Mateev, Y. Tassev, Ionization effect of nuclei with solar and galactic origin in the Earth atmosphere during GLE 69 on 20 January 2005, J. Atmos. Solar-Terr. Phys., 89, 1, 2012.
  291. Mishev, A., Short- and Medium-Term Induced Ionization in the Earth Atmosphere by Galactic and Solar Cosmic Rays, Internat. J. Atmos. Sci., 184508, 2012.
  292. Papailiou, M., H. Mavromichalaki, A. Belov, et al., Solar Phys., 276, 337, 2012.
  293. Shea, M.A., and D.F. Smart, Space Weather and the Ground-Level Solar Proton Events of the 23rd Solar Cycle, Space Sci. Rev., 171, 161, 2012.

    2013

  294. Medina et al., Castilla-La Mancha neutron monitor, Nuc. Inst. Meth. Phys. Res. (A), 727, 97-103, 2013.
  295. Oh, S., J. Bieber, P. Evenson, et al., Record neutron monitor counting rates from galactic cosmic rays, J. Geophys. Res.,, 118, 5431, 2013.
  296. Matthia, D. et al., A ready-to-use galactic cosmic ray model, Adv. Space Res., 51, 329, 2013.
  297. Korotkov, V., et al., Procedure to emend neutron monitor data that are affected by snow accumulations on and around the detector housing, J. Geophys. Res.,, 118, 6852, 2013.
  298. Mertens, C. et al., NAIRAS aircraft radiation model development, dose climatology, and initial validation, Space Weather, 11, 603, 2013.
  299. Krissansen-Totton, J., and R. Davies, Investigation of cosmic ray-cloud connections using MISR, Geophys. Res. lett., 40, 5240, 2013.
  300. Heikkila, U., R. Muscheler, R. and A.M. Smith, Phase of solar activity affects response of solar proxy 10Be, Earth Planet. Sci. Lett., 380, 72-76, 2013.
  301. Oh, S., and J. Kang, Observation of Periodic and Transient Cosmic Ray Flux Variations by the Daejeon Neutron Monitor and the Seoul muon Detector, J. Korea Space Sci. Soc., 30, 175, 2013.
  302. Mrigakshi, A., et al., Estimation of Galactic Cosmic Ray exposure inside and outside the Earth's magnetosphere during the recent solar minimum between solar cycles 23 and 24, Adv. Space Res., 52, 979, 2013.
  303. Mironova, I.A. and I.G. Usoskin, Possible effect of extreme solar energetic particle events of September-October 1989 on polar stratospheric aerosols: a case study, Atmos. Chem. Phys., 13, 8543-8550, 2013.
  304. Erlykin, A.D., Sloan, T. and Wolfendale, A. W., A review of the relevance of the `CLOUD' results and other recent observations to the possible effect of cosmic rays on the terrestrial climate, Meteor. Atmos. Phys. 121, 137, 2013
  305. Lu, Q., Cosmic-Ray Reaction and Greenhouse Effect of Halogenated Molecules: Culprits for Atmospheric Ozone Depletion and Global Climate Change, Inter. J. Modern Phys.B, 27, 1350073, 2013.
  306. Harrison, R. G., Nicoll, K. A., McWilliams, K. A., Space weather driven changes in lower atmosphere phenomena, J. Atmos. Solar-Terr. Phys., 98, 22, 2013.
  307. Li, C., et al., Electron and Proton Acceleration during the First Ground Level Enhancement Event of Solar Cycle 24, Astrophys. J., 770, 34, 2013.
  308. Ahluwalia, H. S. ; Ygbuhay, R. C., Testing baseline stability of some neutron monitors in Europe, Africa, and Asia, Adv. Space Res., 51, 1990, 2013.
  309. Blanco, J. et al., Observable Effects of Interplanetary Coronal Mass Ejections on Ground Level Neutron Monitor Count Rates, Solar Phys., 284, 167, 2013.
  310. Leppanen, A.P. ; Paatero, J., 7Be in Finland during the 1999-2001 Solar maximum and 2007-2009 Solar minimum, J. Atmos. Solar-Terr. Phys., 97, 1, 2013.
  311. Heikkila, U. ; Smith, A. M., Production rate and climate influences on the variability of 10Be deposition simulated by ECHAM5-HAM: Globally, in Greenland, and in Antarctica, J. Geophys. Res., 118, 2506, 2013.
  312. Gopalswamy, N., et al., The First Ground Level Enhancement Event of Solar Cycle 24: Direct Observation of Shock Formation and Particle Release Heights, Astrophys. J., 765, L30, 2013.
  313. McIntosh et al., Hemispheric Asymmetries of Solar Photospheric Magnetism: Radiative, Particulate, and Heliospheric Impacts, Astrophys. J., 765, 146, 2013.
  314. Lee, S. ; Oh, S.; Yi, Y., Simultaneity of Forbush decrease events observed at middle-latitude neutron monitors, J. Geophys. Res., 118, 608, 2013.
  315. Cleeves I., Adams, F., and Bergin, E., Exclusion of cosmic rays in protoplanetary disks: stellar and magnetic effects, Astrophys, J., 772, 5, 2013.

    2014

  316. Papaioannou, A. et al., The First Ground-Level Enhancement of Solar Cycle 24 on 17 May 2012 and Its Real-Time Detection, Solar Phys., 289, 423-436, 2014.
  317. Matthias M. and D. Matthia, A space weather index for the radiation field at aviation altitudes, J. Space Weather Space Clim. 4, A13, 2014.
  318. Plainaki, Ch. et al., The Ground-level Enhancement of 2012 May 17: Derivation of Solar Proton Event Properties through the Application of the NMBANGLE PPOLA Model, Astrophys. J. , 785, 160, 2014.
  319. Zhao, L. G. Qin, M Zhang, B Heber, Modulation of galactic cosmic rays during the unusual solar minimum between cycles 23 and 24, J. Geophys. Res., 119, 1493, 2014.
  320. Matthia, D., M.M. Meier, G. Reitz, Numerical calculation of the radiation exposure from galactic cosmic rays at aviation altitudes with the PANDOCA core model, Space Weather J., 12, 161-171, 2014.
  321. Kane, R., Evolution of Cosmic-Ray Intensities While the Earth Was Engulfed by the Interplanetary Storm (Blob) of 1-3 October 2013, Solar Phys., 289, 2669-2675, 2014.
  322. Zhantayev, Zh., O. Kryakunova, N.Nikolayevskiy, B. Zhumabayev, Space Weather Research in Kazakhstan, Sun Geophys., 9, 71, 2014.
  323. Ehresmann, E., C Zeitlin, DM Hassler, et al., Charged particle spectra obtained with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD) on the surface of Mars, J. Geopjys. Res., 119, 468-479, 2014.
  324. Mishev, A.L. L.G. Kocharov, I.G. Usoskin, Analysis of the ground level enhancement on May 17, 2012 using data from the global neutron monitor 2 Network, J. Geophys. Res., 119, 670-679, 2014.
  325. Sfica, L., M. Voiculescu, Possible effects of atmospheric teleconnections and solar variability on tropospheric and stratospheric temperatures in the Northern Hemisphere, J. Atmos. Solar-Terr. Phys., 109, 7-14, 2014
  326. Oh, S., H. Park, Y Yi, J Chae, Signals of solar cosmic ray flux variations inferred from the noise in raw CCD solar images taken by SOHO/EIT, J. Geophys. Res., 119, 88-96, 2014.
  327. Sato, T. R Kataoka, H Yasuda, S Yashiro, T Kuwabara, AIR SHOWER SIMULATION FOR WASAVIES: WARNING SYSTEM FOR AVIATION EXPOSURE TO SOLAR ENERGETIC PARTICLES, Rad. Protect. Dosim., 158, 10.1093/rpd/nct332, 2014.
  328. Wissmann et al., DOSIMETRY OF SECONDARY COSMIC RADIATION UP TO AN ALTITUDE OF 30 KM Rad. Protect. Dosim., 158, 10.1093/rpd/nct329, 2014.
  329. Kataoka, R. et al., Radiation dose forecast of WASAVIES during ground-level enhancement, Space Weather, 12, 380, 2014.
  330. Thomas, S., M.J. Owens and M. Lockwood, Galactic cosmic rays in the heliosphere, Astr. & Geo, 55, 5.23-5.25, 2014.
  331. R.G. Harrison, K.A. Nicoll, K.L. Aplin, Vertical profile measurements of lower troposphere ionization, J. Atm. Solar-Terr. Phys., 119, 203-210, 2014.
  332. Kocharov L. et al. Transmission and emission of solar energetic particles in semi-transparent shocks, Astrophys. J. Lett., 787, L21, 2014.
  333. Sohn, J. S. Oh, Y. Yi, Lunar cosmic ray radiation environments during Luna and Lunar Reconnaissance Orbiter missions, Adv. Space Res., 54, 1113-1118, 2014.
  334. Yearby, K., M. Balikhin and S. N. Walker, Single-event upsets in the Cluster and Double Star Digital Wave Processor instruments, Space Weather, 12, 24-28, 2014.
  335. Scott, C., et al., Evidence for solar wind modulation of lightning, Environ. Res. Lett., 9, 055004, 2014.
  336. Siluszyk, M., K. Iskra, M.V. Alania, Rigidity Dependence of the Long-Term Variations of Galactic Cosmic-Ray Intensity in Relation to the Interplanetary Magnetic-Field Turbulence: 1968-2002, Solar Phys., 289, 4297-4308, 2014.
  337. Verma, P., Nand Kumar Patel and M. Prajapati, Coronal Mass Ejections, Interplanetary Shocks In Relation With Forbush Decreases Associated With Intense Geomagnetic Storms, J. Phys.: Conf. Ser., 511, 012057, 2014.
  338. Biktash, L., Evolution of Dst index, cosmic rays and global temperature during solar cycles 20-23, Adv. Space Res., 54, 2525-2531, 2014.
  339. V. Maliniemi, T. Asikainen and K. Mursula, Spatial distribution of Northern Hemisphere winter temperatures during different phases of the solar cycle, J. Geophys. Res., 119, 9752-9764, 2014.
  340. Semkova, J. et al., Observation of radiation environment in the International Space Station in 2012-March 2013 by Liulin-5 particle telescope, J. Space Weather Space Clim., 4, A32, 2014.
  341. Alania, M., R. Modzelewska and A. Wawrzynczak, Peculiarities of cosmic ray modulation in the solar minimum 23/24, J. Geophys. Res., 119, 4164-4174, 2014.
  342. Verma, P. S. Soni and A. Kumar Pimpalker, Coronal Mass Ejections and Disturbances in Solar Wind Plasma Parameters in Relation With Short Term Asymmetric Cosmic Ray Intensity Decreases, J. Phys.: Conf. Ser., 511, 012056, 2014.
  343. Caswell, J., Nicolas Rouleau, Simple Binary Prediction of Daily Storm-Level Geomagnetic Activity with Solar Winds and Potential Relevance for Cerebral Function, Internat. Lett. Chem., Phys. Astron., 17(1), 107-113, 2014.
  344. Grigoryev, V.G., S. A. Starodubtsev, and D. D. Isakov, The Energy Spectrum of Forbush Decreases during the Growth, Phase of Solar Cycle 24, Geomag. Aeron., 54, 282-286, 2014.
  345. Verma, P., O. Tripathi and A. Kumar Vishwkarma, Symmetric Cosmic Ray Intensity Decreases in Relation with Coronal Mass Ejections and Disturbances In Solar Wind Plasma Parameters, J. Phys.: Conf. Ser., 511, 012058, 2014.
  346. Aslam, Badruddin, Similarities and Distinctions in Cosmic-Ray Modulation During Different Phases of Solar and Magnetic Activity Cycles, Solar Phys., 289, 2247-2268, 2014.
  347. Maricic, D. et al., Kinematics of Interacting ICMEs and Related Forbush Decrease: Case Study, Solar Phys., 289, 351-368, 2014.
  348. Dzhappuev, D. et al., Investigating hadronic cores of exstensive air showers at the CARPET-2 array, Bull. Russian Acad. Sci.: Phys., 78, 213-215, 2014.
  349. Gromushkin, D. et al., The array for EAS neutron component detection, JINST, 9, C08028, 2014.
  350. Ehresmann, B. et al., Charged particle spectra obtained with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD) on the surface of Mars, J. Geophys. Res., 119, 468-479, 2014.
  351. Martucci, M. et al., Analysis on H spectral shape during the early 2012 SEPs with the PAMELA experiment, Nucl. Inst. Meth. Phys. Res. A, 742, 158-161, 2014.
  352. Pandey, U., M. Singh and P.K. Shrivastava, Correlative analysis of long term cosmic ray variation in relation with interplanetary magnetic field, Int. J. Sci., Env. Tech., 3, 244-249, 2014.
  353. Choudhary, B. et al., A comparative study of helio-latitudinal distribution of b-type and n-type h-solar flares in association with coronal mass ejection or Forbush decreases, Int. J. Sci., Env. Tech., 3, 1810-1816, 2014.
  354. Gupta, M. et al., Correlative Study of Solar Activity and Cosmic Ray Intensity Variations during Present Solar Cycle 24 in Comparison to Previous Solar Cycles, Int. J. Eng. Tech., Manag. App.Sci., 2, 104-115, 2014.
  355. Sharma, N., and T. Ahmad, Cosmic Ray and Geomagnetic Response to High Speed Solar Wind Streams, IOSR J. Appl. Phys., 6, 42-49, 2014.
  356. Tiwari, C. et al., Modulation in Cosmic ray During the Declining and Minimum Solar Activity Period of Solar Cycle 23, Res. J. Phys. Sci., 2, 9-12, 2014.
  357. Berrilli, F. et al., The relativistic solar particle event of May 17th, 2012 observed on board the International Space Station, J. Space Weather Space Clim., 4, A16, 2014.
  358. Di Fino, L. et al., Solar particle event detected by ALTEA on board the International Space Station The March 7th, 2012 X5.4 flare, J. Space Weather Space Clim., 4, A19, 2014.
  359. Raghav, A., et al., Quantitative understanding of Forbush decrease drivers based on shock-only and CME-only models using global signature of February 14, 1978 event, JCAP, 10, 074, 2014.
  360. Darzi, M. et al., Cosmic ray modulation studies with Lead-Free Gulmarg Neutron Monitor, Astropart. Phys., 54, 81-85, 2014.
  361. Caswell, J., Combination of Wavelet Analysis and Artificial Neural Networks Applied to Forecast of Daily Cosmic Ray Impulses, Int. Lett. Chem., Phys. Astron., 15, 55-63, 2014.
  362. Moraal, H., and R. A. Caballero-Lopez, The cosmic-ray ground-level enhancement of 1989 September 29, Astrophys. J., 790,154, 2014.
  363. Smith, C. et al., The heliospheric magnetic flux, solar wind proton flux, and cosmic ray intensity during the coming solar minimum, Space Weather, 12, 499-507, 2014.
  364. Ahluwalia, H., Sunspot activity and cosmic ray modulation at 1 a.u. for 1900-2013, Adv. Space Res., 54, 1704-1716, 2014.
  365. Poluianov, S., I.G. Usoskin, G.A. Kovaltsov, Cosmogenic Isotope Variability During the Maunder Minimum: Normal 11-year Cycles Are Expected, Solar Phys., 289, 4701-4709, 2014.
  366. Suparta, W. and S K Zulkeple, Radiation Dose Analysis of Galactic Cosmic Ray in Low Earth Orbit/Near Equatorial Orbit, J. Phys.: Conf. Ser., 539, 012010, 2014.
  367. Kumar, A., Badruddin, Cosmic-Ray Modulation due to High-Speed Solar-Wind Streams of Different Sources, Speed, and Duration, Solar Phys., 289, 4267-4296, 2014.
  368. Firoz, K. et al., On the possible mechanism of the first ground level enhancement in cosmic ray intensity of solar cycle 24, Astrophys Space Sci., 350, 21-32, 2014.
  369. Ahluwalia, H. et al., May 2005 Halo CMEs and Galactic Cosmic Ray Flux Changes at Earth's Orbit, Solar Phys., 289, 1763-1782, 2014.
  370. Larsson et al., Relative nuclear abundance from C to Fe and integrated flux inside the Russian part of the ISS with the Sileye-3/Alteino experiment, J. Phys. G: Nucl. Part. Phys., 41, 015202, 2014.
  371. Kichigin, G.N. et al., Dynamics of Accelerated Ions in Coronal Loops and Model of a Gamma-Ray Source, Plasma Phys. Rep., 40, 178-193, 2014.
  372. Al Anid. H. et al., Aircrew radiation dose estimates during recent solar particle events and the effect of particle anisotropy, Radiat Prot Dosimetry, 158, 355-367, 2014.
  373. Magee, N.B. et al., Blue Hill Observatory Sunshine - Assessment of Climate Signals in the Longest Continuous Meteorological Record in North America, Bull. Amer. Met. Soc., 2014.
  374. Kuznetsov, N. et al., Protons Acceleration in Solar Flares: The Results of the Analysis of Gamma-emission and Neutrons Recorded by the SONG Instrument Onboard the CORONAS-F Satellite, Astrophys. Space Sci., 400, 301-325, 2014.
  375. Paschalis, P. et al., Geant4 software application for the simulation of cosmic ray showers in the Earth's atmosphere, New Astron., 33, 26-37, 2014.
  376. Belov, A. et al., Coronal Mass Ejections and Non-recurrent Forbush Decreases, Solar Phys. 289, 3949-3960, 2014.
  377. Mandrikova, O.V., I.S Solovev and T.L. Zalyaev, Methods of analysis of geomagnetic field variations and cosmic ray data, Earth Plan. Space, 66, 148, 2014.

    2015

  378. Kole, M. et al., PoGOLino: A scintillator-based balloon-borne neutron detector, Nucl.Inst. Meth. Phys. Res. A, 770, 68-75, 2015.
  379. Kole, M., M. Pearce, M. Munoz Salinasa, A model of the cosmic ray induced atmospheric neutron environment, Astropart. Phys., 62, 230-240, 2015.
  380. Badruddin, O.P.M. Aslam, Influence of cosmic-ray variability on the monsoon rainfall and temperature, J.Atmos. Solar-Terr. Phys., 122, 86-96, 2015.
  381. Raghav, A. et al., Low energy secondary cosmic ray flux (gamma rays) monitoring and its constrains, Astrophys Space Sci 355:2172, 10.1007/s10509-014-2172-8 2015
  382. Firoz, K. et al., An Interpretation of a Possible Mechanism for the First Ground-Level Enhancement of Solar Cycle 24, Solar Phys, DOI 10.1007/s11207-014-0619-2, 2015.
  383. Ahluwalia, H., R.C. Ygbuhay, Cosmic Ray 11-Year Modulation for Sunspot Cycle 24, Solar Phys, 10.1007/s11207-014-0624-5, 2015
  384. Duenas, D. et al., Study of the cosmogenic factors influence on temporal variation of 7Be air concentration during the 23rd solar cycle in Malaga (South Spain), J Radioanal Nucl Chem. 10.1007/s10967-014-3737-2, 2015
  385. Kole, M. et al., PoGOLino: A scintillator-based balloon-borne neutron detector, Nucl.Inst. Meth. Phys. Res. A, 770, 68-75, 2015.
  386. Poluianov, S. et al., Mini Neutron Monitors at Concordia Research Station, Central Antarctica, J. Astron. Space Sci. , 32(4), 281-287, 2015.
  387. Calogovic J., Laken B. A., Reflections on the Late Cosmoclimatology, Cent. Eur. Astrophys. Bull. , 39(1), 145-160, 2015.
  388. Mishev, A. L., Contribution of cosmic ray particles to radiation environment at high mountain altitude: Comparison of Monte Carlo simulations with experimental data, J. Environ. Radioact. , 153, 15-22, 2016.
  389. Galkin, V. D., Nikanorova I. N., Solar Activity and Atmospheric Water Vapor, Geomagn. Aeron. , 55(8), 1175-1179, 2015.
  390. Podgorny, I. M., Podgorny A. I., Acceleration and Propagation of Solar Cosmic Rays, Geomagn. Aeron. , 55(8), 1159-1164, 2015.
  391. Ortiz, E. et al., Observation of Cosmic Ray at the top of the Sierra Negra volcano in Mexico with the SciCRT prototype, Revista Mexicana de Fisica , 61, 466-474, 2015.
  392. McCracken, K.G., Beer J., The Annual Cosmic-Radiation Intensities 1391 - 2014; The Annual Heliospheric Magnetic Field Strengths 1391 - 1983, and Identification of Solar Cosmic-Ray Events in the Cosmogenic Record 1800 - 1983, Solar Phys , 290, 3051-3069, 2015.
  393. Borog, V.V et al., Identification of Solar Coronal Mass Ejections in Cosmic Ray Flux Using Flicker Noise Spectroscopy, Physics Procedia, 74, 336-339, 2015.
  394. Troitskayaa, E.V. et al., About 3He Ions Predominant Acceleration During the January 20, 2005 Solar Flare, Physics Procedia , 74, 274-280, 2015.
  395. Mason, P., Estimating ground-level neutron-flux enhancements in the extreme cosmic-ray events of the next 100, 1000 and 10 000 years, J. Atmosph. Solar-Terr. Phys., 135, 92-100, 2015.
  396. Ahluwalia, H. S., North-south excess of hemispheric sunspot numbers and cosmic ray asymmetric solar modulation, Adv. Space Res., 56(11), 2645-2648, 2015.
  397. Ahluwalia, H.S., North-south component of galactic cosmic ray anisotropy at 1 AU,Adv. Space Res., 56(11), 2649-2653, 2015.
  398. Singh, Y.P., Badruddin, Short-Term Variations of Cosmic-Ray Intensity During the Recent Deep Solar Minimum and the Previous FourSolar Minima: A Wavelet Analysis, Solar Phys , 290, 3071-3079, 2015.
  399. Shumilov, O.I. et al., Effects of Extraordinary Solar Cosmic Ray Events on Variations in the Atmospheric Electric Field at High Latitudes, Geomagn. Aeron., 55(5), 650-657, 2015.
  400. Kilifarskaa, N.A. et al., Geomagnetic Field and Climate: Causal Relations with Some Atmospheric Variables, Phys. Solid Earth, 51(5), 768-785, 2015.
  401. Kocharov, L. et al., Comparative Morphology of Solar Relativistic Particle Events, Astrophys. J. Lett., 811, L9, 2015.
  402. Fedorov, Yu.I. et al., Dynamics of solar cosmic ray energetic spectra during the solar flare on January 20, 2005, Space Physics, 31(4), 161-171, 2015.
  403. Mironova, I. A. et al., Energetic Particle Influence on the Earth's Atmosphere, Space Sci Rev, 194, 1-96, 2015.
  404. Parnahaj, I., Kudela K., Forbush decreases at a middle latitude neutron monitor: relations to geomagnetic activity and to interplanetary plasma structures, Astrophys Space Sci , 359:35, 2015.
  405. Wawrzynczak, A., Alania M.V., The connection of the interplanetary magnetic field turbulence and rigidity spectrum of Forbush decrease of the galactic cosmic ray intensity, J. Physics: Conf. Ser., 632, 012083, 2015.
  406. Siluszyk, M. et al., 2-D Modelling of Long Period Variations of Galactic Cosmic Ray Intensity, J. Physics: Conf. Ser. , 632, 012080, 2015.
  407. Savic, M. et al., Pressure and temperature effect corrections of atmospheric muon data in the Belgrade cosmic-ray station, J. Phys.: Conf. Ser., 632, 012059, 2015.
  408. Dmitrieva, A. et al., Temperature effect corrections for URAGAN based on CAO, GDAS, NOAA data, J. Phys.: Conf. Ser. , 632, 012054, 2015
  409. Buetikofer, R., Fluckiger E., What are the causes for the spread of GLE parameters deduced from NM data?, J. Phys.: Conf. Ser. , 632, 012053, 2015.
  410. Parnahaj, I. et al., Magnetospheric transmissivity for cosmic rays during selected recent events with interplanetary/geomagnetic disturbances, J. Phys.: Conf. Ser. , 632, 012064, 2015
  411. Kryakunova, O. et al., Recurrent and sporadic Forbush-effects in deep solar minimum, J. Phys.: Conf. Ser. , 632, 012062, 2015.
  412. Abunina, M. et al., Phase distribution of the first harmonic of the cosmic ray anisotropy during the initial phase of Forbush effects, J. Phys.: Conf. Ser., 632, 012044, 2015.
  413. Iskra, K. et al., Rigidity spectrum of the long-period variations of the galactic cosmic ray intensity in different epochs of solar activity, J. Phys.: Conf. Ser., 632, 012079, 2015.
  414. Czymzika, M. et al., Solar cycles and depositional processes in annual 10Be from two varved lake sediment records, Earth Planet. Sci. Lett., 428, 44-51, 2015.
  415. Veretenenko, S.V., Ogurtsov M. G., Nature of Long Term Correlations between Cloud State and Variations in Galactic Cosmic Ray Flux, Geomagn. Aeron., 55(4), 442-449, 2015.
  416. Hubert, G., Cheminet A., Radiation Effects Investigations Based on Atmospheric Radiation Model (ATMORAD) Considering GEANT4 Simulations of Extensive Air Showers and Solar Modulation Potential, Radiation Research 184(1), 83-94, 2015.
  417. Broomhall, A.-M., Nakariakov V. M., A Comparison Between Global Proxies of the Sun's Magnetic Activity Cycle: Inferences from Helioseismology,Solar Phys , 290, 3095-3111, 2015.
  418. Matthia, D. et al., Economic impact and effectiveness of radiation protection measures in aviation during a ground level enhancement, J. Space Weather Space Clim., 5, A17, 2015.
  419. Gurevich, A. V. et al., The time structure of neutron emission during atmospheric discharge, Atmospheric Research, 164, 339-346, 2015.
  420. Gerasimova, S. K. et al., A modified basic model of the heliospheric modulation of cosmic rays, Bulletin of the Russian Academy of Sciences: Physics, 79(5), 613-615, 2015.
  421. Dergachev, V. A., Dmitriev P. B., Cosmic ray flux variations and their correlation with the global temperatures of the Earth's troposphere and stratosphere in the 23rd and 24th solar cycles (2002-2014), Bulletin of the Russian Academy of Sciences: Physics, 79(5), 670-672, 2015.
  422. Makhmutov, V. S. et al., Analysis of cosmic ray variations recorded in October-December 2013, Bulletin of the Russian Academy of Sciences: Physics, 79(5), 570-572, 2015.
  423. Belov, A. V. et al., Annual variation in and heliolatitude dependence of cosmic ray density, Bulletin of the Russian Academy of Sciences: Physics, 79(5), 618-621, 2015.
  424. Grigoryev, V. G., Starodubtsev S. A., Global survey method in real time and space weather forecasting, Bulletin of the Russian Academy of Sciences: Physics, 79(5), 649-653, 2015.
  425. Belov, A. V. et al., Possible ground level enhancements of solar cosmic rays in 2012, Bulletin of the Russian Academy of Sciences: Physics, 79(5), 561-565, 2015.
  426. Curdt, W., Fleck B., Solar and galactic cosmic rays observed by SOHO,Cent. Eur. Astrophys. Bull., 1, 1-10, 2015.
  427. Astapov, I. I. et al., Local anisotropy of muon flux - The basis of the method of muon diagnostics of extra-terrestrial space, Adv. Space Res., 56(12), 2713-2718, 2015.
  428. Logachev, Yu. I. et al., A comparison of proton activity in cycles 20-23, Geomagn. Aeron., 55(3), 277-286, 2015.
  429. Mishev, A., Usoskin I., Numerical model for computation of effective and ambient dose equivalent at flight altitudes. Application for dose assessment during GLEs, J. Space Weather Space Clim., 5, A10, 2015.
  430. Morgado, B. et al., The low energy magnetic spectrometer on Ulysses and ACE response to near relativistic protons, Astron. Astrophys., 577, A61, 2015.
  431. Mishev, A. L., Velinov P.I.Y., Time evolution of ionization effect due to cosmic rays in terrestrial atmosphere during GLE 70, J. Atmos. Solar-Terr. Phys., 129, 78-86, 2015.
  432. Pacini, A. A. et al., Signature of a sudden stratospheric warming in the near-ground 7Be flux, Atmospheric Environment, 113, 27-31, 2015.
  433. Perez-Peraza, J., Juarez-Zuniga A., Prognosis of GLEs of Relativistic Solar Protons, Astrophys. J. 803:27, 2015.
  434. Belov, A. et al., Galactic Cosmic Ray Density Variations in Magnetic Clouds, Solar Phys, 290, 1429-1444, 2015.
  435. Dachev, T. P. et al., Overview of the Liulin type instruments for space radiation measurement and their scientific results, Life Sciences in Space Research , 4, 92-114, 2015.
  436. Alekseenko, V. et al., Decrease of Atmospheric Neutron Counts Observed during Thunderstorms, Phys. Rev. Lett. , 114, 125003, 2015.
  437. Guo, J. et al., Variations of dose rate observed by MSL/RAD in transit to Mars, Astron. Astrophys., 577, A58, 2015
  438. Richharia, M. K., Study of Higher Harmonics of Cosmic Ray Intensity on Quiet Days at Deep River Neutron Monitoring Station, Internat. J. Astrophys. Space Sci., 3, 4-6, 2015.
  439. Nemec, F. et al., Intensity of nightside MARSIS AIS surface reflections and implications for low-altitude ionospheric densities, J. Geophys. Res., Space Phys., 120(4), 3226-3239, 2015.
  440. Badruddin, Kumar A., Study of the Forbush Decreases, Geomagnetic Storms, and Ground-Level Enhancements in Selected Intervals and Their Space Weather Implications, Solar Phys, 290, 1271-1283, 2015.
  441. Usoskin, I. G. et al., Force-field parameterization of the galactic cosmic ray spectrum: Validation for Forbush decreases, Adv. Space Res., 55(12), 2940-2945, 2015.
  442. Astapov, I.I. et al., Powerful non-geoeffective interplanetary disturbance of July 2012 observed by muon hodoscope URAGAN, Adv. Space Res., 56(12), 2833-2838, 2015.
  443. Jain, A. et al., Full Halo Coronal Mass Ejection and Cosmic Ray Intensity, Internat. J. Sci. Res., 4(3), 273-274, 2015.
  444. Bentoutou, Y., Bensikaddour E.-H., Analysis of radiation induced effects in high-density commercial memories on-board Alsat-1: The impact of extreme solar particle events, Adv. Space Res., 55(12), 2820-2832, 2015.
  445. Singh, R. P., Long - term influence of solar activity and CMEs with cosmic ray intensity variations, Ultra Scientist, 26(3)B, 277-282, 2014.
  446. Verma, P.L., Solar Coronal Index in Relation with Suicide Incidents in United State and Northern Ireland (1997 to 2008),European Academic Research, II(11), 14992-15002, 2015.
  447. Thomas, S.R. et al., Near-Earth cosmic ray decreases associated with remote coronal mass ejections, Astrophys. J., 801:5, 2015.
  448. Adriani, O. et al., PAMELA's Measurements of Magnetospheric Effects on High Energy Solar Particles,Astrophys. J. Lett., 801, L3, 2015.
  449. Dachev, T.P. et al., Overview of the Liulin type instruments for space radiation measurement and their scientific results,Life Sciences in Space Research, 4, 92-114, 2015.
  450. Pacini, A.A., Usoskin I.G., An Unusual Pattern of Cosmic-Ray Modulation During Solar Cycles 23 and 24, Solar Phys, 290, 943-950, 2015.
  451. Tiwari, B.K., B.R. Ghormare, Galactic cosmic rays modulation due to solar-interplanetary activity, Res. & Rev.: J. Phys., 4(3), 23–26, 2015.

    2016

  452. Abbrescia et al., Recent results and performance of the multi-gap resistive plate chambers network for the EEE Project, J. Inst., 11, C11005, 2016.
  453. Adriani et al., Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by the PAMELA Experiment between July 2006 and December 2015, Phys. Rev. Lett., 116, 241105, 2016.
  454. Altukhov, A.A., Teplova, T.B., L'vov, S.A. et al. Electrophysical and structural optimization in monitoring the neutron yield of borehole generators, Russ. Engin. Res., 36, 700., 2016.
  455. Aplin, K. & R. G. Harrison, Determining solar effects in Neptune's atmosphere, Nature Comm., 7, 11976, 2016.
  456. Artamonov, A.A., G. A. Kovaltsov, A. L. Mishev, I. G. Usoskin, Neutron monitor yield function for solar neutrons: A new computation, J. Geophys. Res., 121, 117-128.
  457. Asvestari, E. and I.G. Usoskin, An empirical model of heliospheric cosmic ray modulation on long-term time scale. J. Space Weather Space Clim., 6, A15, 2016, (doi: 10.1051/swsc/2016011)
  458. Badruddin & Kumar, A., Study of the Cosmic-Ray Modulation During the Passage of ICMEs and CIRs, Sol Phys (2016) 291: 559
  459. Belehaki, A., et al., The ESPAS e-infrastructure: Access to data from near-Earth space, Adv. Space Res., 58, 1177, 2016.
  460. Berger, T., B. Przybyla, D. Matthia, G. Reitz, S. Burmeister, et al., DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS), J Space Weather Space Clim., 6, 2016.
  461. Bhaskar, A., P. Subramanian, G. Vichare, Relative Contribution of the Magnetic Field Barrier and Solar Wind Speed in ICME-associated Forbush Decreases, Astrophys. J., 828, 104, 2016.
  462. Bhaskar, A., Vichare, G., Arunbabu, K.P. et al., Role of solar wind speed and interplanetary magnetic field during two-step Forbush decreases caused by Interplanetary Coronal Mass Ejections, Astrophys Space Sci, 361, 242, 2016.
  463. Chauvin, M., et al., Optimising a balloon-borne polarimeter in the hard X-ray domain: From the PoGOLite Pathfinder to PoGO+, Astropart. Phys., 82, 99, 2016.
  464. Chowdhury, P., Kudela, K. & Moon, YJ., A Study of Heliospheric Modulation and Periodicities of Galactic Cosmic Rays During Cycle 24, Sol Phys (2016) 291: 581.
  465. Cretu, A., L. Garritano, M. Schioppa, Experiential Learning and Physics: The Correlation of Muon Flux with Variations in Local Pressure, Amer. J. Educat. Res., 4, 1164, 2016.
  466. De Gruttola et al., A Multigap Resistive Plate Chambers array for the Extreme Energy Events Project, Nucl. Part. Phys. Proc., 279-281, 38, 2016.
  467. Ding, L., Y. Jiang, G. Li, Are There Two Distinct Solar Energetic Particle Releases in the 2012 May 17 Ground Level Enhancement Event? Astrophys. J., 818, 169, 2016.
  468. Dong, A. et al., Mitigating bit flips or single event upsets in epilepsy neurostimulators, Epilepsy & Behavior Case Reports, 5, 72, 2016.
  469. Dubey, A. , S. Kumar and S.K.Dubey, Cosmic Ray Daily Variation on Anomalous Days, J. Phys. Conf. Ser., 755, 012056, 2016.
  470. El-Borie et al., North-South Asymmetry of Solar Diurnal Variations of Cosmic-Ray Intensity Throughout the Period 1975?-?2013, Solar Phys., 291, 3817, 2016.
  471. Ehresmann, B. et al., Charged particle spectra measured during the transit to Mars with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD), Life Sci. Space Res., 10, 29, 2016.
  472. Fujiki et al., LONG-TERM TREND OF SOLAR CORONAL HOLE DISTRIBUTION FROM 1975 TO 2014, Astrophys. J., 827, L41, 2016.
  473. Gil, A. & Alania, M.V., Energy Spectrum of the Recurrent Variation of Galactic Cosmic Rays During the Solar Minimum of Cycles 23/24, Sol Phys, 291, 1877, 2016.
  474. Gopalswamy, N. et al., The 2012 July 23 Backside Eruption: An Extreme Energetic Particle Event? Astrophys. J., 833, 216.
  475. Grechnev, V.V. & Kochanov, A.A., The 26 December 2001 Solar Event Responsible for GLE63. I. Observations of a Major Long-Duration Flare with the Siberian Solar Radio Telescope, Sol Phys (2016) 291: 3705.
  476. Gvozdevskii, B.B., Abunin, A.A., Kobelev, P.G. et al. Magnetospheric effects of cosmic rays. 1. Long-term changes in the geomagnetic cutoff rigidities for the stations of the global network of neutron monitors. Geomagn. Aeron. (2016) 56: 381.
  477. Hubert, G., Analyses of cosmic ray induced-neutron based on spectrometers operated simultaneously at mid-latitude and Antarctica high-altitude stations during quiet solar activity, Astropart. Phys., 83, 30, 2016.
  478. Ihongo, G. D., Wang C. H.-T., The effects of solar wind on galactic cosmic ray flux at Earth, Astrophysics and Space Science , 361:44, 2016
  479. Jain, A. et al., Effect Of Coronal Mass Ejections On Cosmic Ray Intensity And Geomagnetic Indices For The Period Of 1996-2013, Int. J. Sci. Env. Tech., 5, 1820, 2016
  480. Kang, J., S. Oh, Y. Yi, and Y. Kim, Forbush decreases observed by Daejeon neutron monitor, Adv. Space Res., 57, 912, 2016.
  481. Kappl, R., SOLARPROP: Charge-sign dependent solar modulation for everyone, Comp. Phys. Comm., 207, 386, 2016.
  482. Kobelev et al., Barometric Effect Of Neutron Component Of Cosmic Rays At Antarctic Station Mirny, Solar-Terr. Phys., 2. 97, 2016.
  483. Kudela, K., On low energy cosmic rays and energetic particles near Earth, Contrib. Astron. Obs. Skalnate Pleso 46, 15-70, 2016.
  484. Lingri, D., Mavromichalaki, H., Belov, A. et al., Solar Activity Parameters and Associated Forbush Decreases During the Minimum Between Cycles 23 and 24 and the Ascending Phase of Cycle 24, Sol Phys (2016) 291: 1025.
  485. Matthiae, D., B. Ehresmann, H. Lohf, J. Koehler, C. Zeitlin, et al., The Martian surface radiation environment - a comparison of models and MSL/RAD measurements, J. Space Weather Space Clim., 6, A13, 2016.
  486. Mavromichalaki, H., Papageorgiou, C. & Gerontidou, M., Solar cycle and 27-day variations of the diurnal anisotropy of cosmic rays during the solar cycle 23, Astrophys Space Sci (2016) 361: 69.
  487. Meier MM, Trompier F, Ambrozova I, Kubancak J, Matthia D, et al. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes. J. Space Weather Space Clim., 6, A24, 2016
  488. Meier, M. M., D. Matthia, T. Forkert, M. Wirtz, M. Scheibinger, R. Huebel, and C. J. Mertens, RaD-X: Complementary measurements of dose rates at aviation altitudes, Space Weather, 14, 689-694, 2016.
  489. Melott, A. et al., Atmospheric ionization by high-fluence, hard-spectrum solar proton events and their probable appearance in the ice core archive, J. Geophys. Res. Atmos., 121, 3017, 2016.
  490. Miroshnichenko, L.I., and V. G. Yanke, Size Distributions of Solar Proton Events: Methodological and Physical Restrictions, Solap Phys., 291, 3685, 2016.
  491. Mishev, A.L., Contribution of cosmic ray particles to radiation environment at high mountain altitude: Comparison of Monte Carlo simulations with experimental data, J. Envir. Radioact., 153, 15-22, 2016.
  492. Mishev, A.L., I. G. Usoskin, Analysis of the Ground-Level Enhancements on 14 July 2000 and 13 December 2006 Using Neutron Monitor Data, Solar Physics, 291, 1225-1239, 2016.
  493. Mishra, V.K. & Mishra, A.P. Study of solar activity and cosmic ray modulation during solar cycle 24 in comparison to previous solar cycle, Indian J Phys 90. 1333, 2016.
  494. Mishra, V.K. & Mishra, A.P., Coronal Index of Solar Activity and Long-Term Variation of Cosmic Rays, Int. J. Sci. Eng. Tech. Res., 5, 390, 2016.
  495. Mukherjee et al., Near space radiation dosimetry in Australian outback using a balloon borne energy compensated PIN diode detector, Radiat. Measur., 94, 65-72, 2016.
  496. Ng, K.C.Y. et al., First observation of time variation in the solar-disk gamma-ray flux with Fermi, Phys. Rev. D., 94 (2), 023004, 2016.
  497. Owens, M.J., E. Cliver, K. G. McCracken, J. Beer, L. Barnard, M. Lockwood, A. Rouillard, D. Passos, P. Riley, I. Usoskin, and Y-M. Wang, Near-Earth heliospheric magnetic field intensity since 1750: 2. Cosmogenic radionuclide reconstructions, J. Geophys. Res., 121, 6064-6074, 2016.
  498. Panetta M.P., The EEE Project: An extended network of muon telescopes for the study of cosmic rays, Nuclear Inst. Methods Phys. Res., A, 824, 642, 2016.
  499. Rouillard, A. P. et al., Deriving the Properties of Coronal Pressure Fronts in 3D: Application to the 2012 May 17 Ground Level Enhancement, Astrophys. J., 833, 45, 2016.
  500. Shayan, M., P. Davoudifar A. Ajabshirizadeh, A Study of Forbush Effect During Halloween Storm, Iran. J. Sci. Tech., 40, 177-181, 2016.
  501. Tezari, A. and H. Mavromichalaki, Diurnal anisotropy of cosmic rays during intensive solar activity for the period 2001-2014, New Astron., 46, 78, 2016.
  502. Tezari A., et al., Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014, Ann. Geophys., 34, 1053, 2016
  503. Thakur, N., Gopalswamy, N., Makela, P. et al., Two Exceptions in the Large SEP Events of Solar Cycles 23 and 24, Sol Phys (2016) 291: 513.
  504. Umahi, A., Impact of Space Radiation in the Earth's Atmosphere, American-Eurasian J. Agric. Environ. Sci., 16 (5), 868, 2016.
  505. Valdes-Galicia, J. F. and L. Gonzalez, Solar modulation of low energy galactic cosmic rays in the near-earth space environment, Adv. Space Res., 57, 1294, 2016.
  506. Vipindas, V., Gopinath, S. & Girish, T.E., Periodicity analysis of galactic cosmic rays using Fourier, Hilbert, and higher-order spectral methods, Astrophys Space Sci., 361, 135, 2016.
  507. Wawrzynczak, A., R. Modzelewska, The stochastic modeling of the short-time variations of the galactic cosmic rays, J. Phys.. Conf. Ser., 738, 012001, 2016.
  508. Yaniv, R., Y. Yair, C. Price, K. Nicoll, G. Harrison, A. Artamonov, I. Usoskin, Balloon measurements of the vertical ionization profile over southern Israel and comparison to mid-latitude observations, J. Atm. Solar-Terr. Phys., 149, 87-92, 2016.
  509. Yanchukovsky et al., Receiving Vectors Of Muon Telescope Of Cosmic Ray Station Novosibirsk, Solar-Terr. Phys., 2, 103, 2016.
  510. Zhao, L. and H. Zhang, Transient Galactic Cosmic-Ray Modulation During Solar Cycle 24: A Comparative Study Of Two Prominent Forbush Decrease Events, Astrophys. J., 827, 13, 2016.

    2017

  511. Abe Pacini, A., Cosmic rays: bringing messages from the sky to the Earth's surface, Rev. Bras. Ensino Fis. v.39, e1306, 2017
  512. Dilillo, L. et al., Soft errors in commercial off-the-shelf static random access memories, Semiconductor Science and Technology, 32, 013006, 2017.
  513. Kharayat, H. & Prasad, L. Study of cosmic ray intensity and geomagnetic storms with solar wind parameters during the period 1998-2005, Astrophys Space Sci, 362: 20, 2017.
  514. Kuehl, P., N. Dresing, B. Heber, A. Klassen, Solar Energetic Particle Events with Protons Above 500 MeV Between 1995 and 2015 Measured with SOHO/EPHIN, Solar Phys., 292, 10, 2017.
  515. Mavromichalaki et al., A study of the possible relation of the cardiac arrhythmias occurrence to the polarity reversal of the solar magnetic field, Adv. Space Res., 59, 366, 2017.
  516. Pazianotto, M., et al., Extensive air shower Monte Carlo modeling at the ground and aircraft flight altitude in the South Atlantic Magnetic Anomaly and comparison with neutron measurements, Astroparticle Physics, 88, 17, 2017.
  517. Kumar, A., Badruddin, M. Derouich, Passage of ICMEs, their associated shock structure, and transient modulation of galactic cosmic rays, Sol. Phys., 292:166, 2017.
  518. Mishev A., S. Poluianov and I. Usoskin, Assessment of spectral and angular characteristics of sub-GLE events using the global neutron monitor network, J. Space Weather Space Clim., 7, A28, 2017.
  519. Deeprom, M. and T. Nutaro, Forbush decreases detected at the Princess Sirindhorn neutron monitor in the 24th solar cycle, J. Phys.: Conf. Ser., 901, 012053, 2017.
  520. Velasco Herrera, V.M. et al., The quasi-biennial oscillation of 1.7 years in ground level enhancement events, New Astron., 60, 7-13, 2018.
  521. Mendaza, T., J. J. Blanco-Avalos, J. Martin-Torres, Interplanetary coronal mass ejection effects on thermospheric density as inferred from international space station orbital data, Adv. Space Res., 60, 2233-2251, 2017.
  522. Thomas, S. et al., Decadal trends in the diurnal variation of galactic cosmic rays observed using neutron monitor data, Ann. Geophys., 35, 825-838, 2017.
  523. Ratliff, H. N., Michael B.R. Smith, L. Heilbronn, Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6, Life Sc. Space Res., 14, 43-50, 2017.
  524. Ehresmann, B. et al., The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016, Life Sc. Space Res., 14, 3-11, 2017.
  525. Grimani, C. et al., GCR flux 9-day variations with LISA Pathfinder, J. Phys.: Conf. Ser., 840, 012037, 2017.
  526. Oh, S. and Y. Yi, Variations in solar parameters and cosmic rays with solar magnetic polarity, Astrophys. J., 840:1, 14, 2017.
  527. Kocharov, L. et al., Investigating the origins of two extreme solar particle events: proton source profile and associated electromagnetic emissions, Astrophys. J., 839:2, 79, 2017.
  528. Lagoida, I. A. et al., Investigations of Forbush decreases in the PAMELA experiment, J. Phys.: Conf. Ser., 798:1, 012038, 2017.
  529. Matthia, D., T. Berger, The radiation environment on the surface of Mars - Numerical calculations of the galactic component with GEANT4/PLANETOCOSMICS, Life Sc. Space Res., 14, 57-63, 2017.
  530. Berger, T. et al., DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009-2016, J. Space Weather Space Clim., 7, A8, 2017.
  531. Singh, Y. P., Badruddin, Short- and mid-term oscillations of solar, geomagnetic activity and cosmic ray intensity during the last two solar magnetic cycles, Planet. Space Sci., 138, 1-6, 2017.
  532. Page, N. J., The coming cooling: Usefully accurate climate forecasting for policy makers, SAGE J., Energy & Envir., 28:3, 330-347, 2017.
  533. Guo, J., et al., Dependence of the Martian radiation environment on atmospheric depth: Modeling and measurement, J. Geophys. Res. Planets, 122, 329-341, 2017.
  534. Grechnev, V. V. et al., The 26 December 2001 solar eruptive event responsible for GLE63: III. CME, shock waves, and energetic particles, Sol. Phys., 292:8, 102, 2017.
  535. Ghelfi, A. et al., Neutron monitors and muon detectors for solar modulation studies: 2. time series, Adv. Space Res., 60:4, 833-847, 2017.
  536. Donato, F., M. Korsmeier, M. Di Mauro, Prescriptions on antiproton cross section data for precise theoretical antiproton flux predictions, Phys. Rev. D, 96:4, 043007, 2017.
  537. Tomassetti, N., Testing universality of cosmic-ray acceleration with proton/helium data from AMS and Voyager-1, Adv. Space Res., 60:4, 815-825, 2017.
  538. Asvestari, E. et al., Analysis of Ground Level Enhancements (GLE): Extreme solar energetic particle events have hard spectra, Adv. Space Res., 60:4, 781-787, 2017.
  539. Richardson, I. G., von Rosenvinge Tycho T., Cane Hilary V., 25 MeV solar proton events in Cycle 24 and previous cycles, Adv. Space Res., 60:4, 755-767, 2017.
  540. Kravtsova, M. V., V. E. Sdobnov, Ground level enhancements of cosmic rays in solar cycle 24, Astron. Lett., 43:7, 501-506, 2017.
  541. Strauss, R. D. et al., On the pulse shape of ground-level enhancements, Sol. Phys., 292:4, 51, 2017.
  542. Usoskin, I. G. et al., Heliospheric modulation of cosmic rays during the neutron monitor era: Calibration using PAMELA data for 2006-2010, J. Geophys. Res. Space Phys., 122:4, 3875-3887, 2017.
  543. Gil, A., Mursula, K., Hale cycle and long-term trend in variation of galactic cosmic rays related to solar rotation, Astron. Astrophys., 599, A112, 2017.
  544. Pazianotto, M. T. et al., Extensive air shower Monte Carlo modeling at the ground and aircraft flight altitude in the South Atlantic Magnetic Anomaly and comparison with neutron measurements, Astropart. Phys., 88, 17-29, 2017.
  545. Kuehl, P. et al., Solar energetic particle events with protons above 500 MeV between 1995 and 2015 measured with SOHO/EPHIN, Sol. Phys., 292:1, 10, 2017.
  546. Mavromichalaki, H. et al., A study of the possible relation of the cardiac arrhythmias occurrence to the polarity reversal of the solar magnetic field, Adv. Space Res., 59:1, 366-378, 2017.
  547. Buch, J., Ralegankar P., Rentala V., Late decaying 2-component dark matter scenario as an explanation of the AMS-02 positron excess, J. Cosm. and Astropart. Phys., 10, 028, 2017.
  548. Hernandez, M. S. et al., Structure of accretion flows in nova-like cataclysmic variables: RW Sextantis and 1RXS J064434.5+334451, Month. Not. Royal Astron. Soc., 470:2, 1960-1970, 2017.
  549. Paassilta, M. et al. Catalogue of 55-80 MeV solar proton events extending through solar cycles 23 and 24, J. Space Weather Space Clim., 7, A14, 2017.
  550. Ogunjobi, O., Sivakumar V., Mtumela Z., A comparison of outer electron radiation belt dropouts during solar wind stream interface and magnetic cloud driven storms, J. Earth Syst. Sci., 126:4, 47, 2017.
  551. Poluianov, S.V., I.G. Usoskin, A.L. Mishev, M.A. Shea, D.F. Smart, GLE and Sub-GLE Redefinition in the Light of High-Altitude Polar Neutron Monitors, Solar Phys., 292, 176, 2017.
  552. Asvestari E., T. Willamo, A. Gil, I.G. Usoskin, G.A. Kovaltsov, V.V. Mikhailov, A. Mayorov, Analysis of Ground Level Enhancements (GLE): Extreme solar energetic particle events have hard spectra, Adv. Space Res., 60, 781-787, 2017.
  553. Asvestari, E., A. Gil, G.A. Kovaltsov, I.G. Usoskin, Neutron Monitors and Cosmogenic Isotopes as Cosmic Ray Energy-Integration Detectors: Effective Yield Functions, Effective Energy, and Its Dependence on the Local Interstellar Spectrum, J. Geophys. Res. Space Phys., 120, 9790, 2017.
  554. Tomassetti, N., Solar and nuclear physics uncertainties in cosmic-ray propagation, Phys. Rev. D, 96, 103005, 2017.
  555. Maghrabi, A.H., H. Al Dajani, On the relationship between cosmic rays detected by the KACST muon detector and solar wind speed and sunspot number, Proc. Sci., 2017, 005, 2017.
  556. Hubert, G., S. Aubry, Atmospheric Cosmic-Ray Variation and Ambient Dose Equivalent Assessments Considering Ground Level Enhancement Thanks to Coupled Anisotropic Solar Cosmic Ray and Extensive Air Shower Modeling, Rad. Res., 188, 517-531. 2017
  557. Miyake, S., R. Kataoka, T. Saro, Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25, Space Weather, 15, 589-605, 2017.
  558. Aslam O.P.M. Badruddin, Study of the Geoeffectiveness and Galactic Cosmic-Ray Response of VarSITI-ISEST Campaign Events in Solar Cycle 24, Solar Phys., 292, 135, 2017.
  559. Morozova, A., J. Blanco, R. Ribeiro, Modes of temperature and pressure variability in midlatitude troposphere and lower stratosphere in relation to cosmic ray variations, Space Weather, 15, 673-690, 2017.
  560. Scholkmann F., V. Milian-Sanchez, A. Mochola-Salcedo et al., Anomalous effects of radioactive decay rates and capacitance values measured inside a modified Faraday cage: Correlations with space weather, Europhys. Lett., 117, 62002, 2017.
  561. Bhaskar, A., D. Sai Ramesh, G Vichare, T. Koganti, S. Gurubaran, Quantitative assessment of drivers of recent global temperature variability: an information theoretic approach, Climate Dyn., 49, 3877-3886, 2017.
  562. Beer, J., S.M. Tobias, N.O. Weiss, On long-term modulation of the Sun's magnetic cycle, MNRAS 473, 1596-1602, 2018.
  563. Jalas, P., T. Enqvist, V. Isoherranen et al., Callio Lab, a new deep Underground Laboratory in the Pyhasalmi mine, J. Phys.: Conf. Ser., 888, 012156, 2017.
  564. Stoupel, E., Space weather and tachysystolic Sudden Cardiac Death (SCD)- lessons from clinical cosmobiology Int. J. Car. Heart Heal., 1:1, 09-11, 2017.
  565. Herbst, K., R. Muscheler, B. Heber, The new local interstellar spectra and their influence on the production rates of the cosmogenic radionuclides 10Be and 14C J. Geophys. Res. Space Phys., 122, 23, 2017.
  566. Mitthumsiri, W., A. Seripienlert, U. Tortermpun, et al., Modeling polar region atmospheric ionization induced by the giant solar storm on 20 January 2005, J. Geophys. Res. Space Phys., 122, 7946-7955, 2017.
  567. Sdobnov, V., Analysis of ground level enhancement on January 6, 2014 Bull. Russ. Acad. Sci. Phys. 81, 121, 2017.
  568. Stoupel. E., Pharmacotherapy in Changing Environmental Physical Activity (EPA). Preventive Measures. Emerg. Med. Inves., J131, 2017.
  569. Meier, M., D. Matthia, Assessment of the skin dose for aircrew J. Radiolog. Prot., 37, 321, 2017.
  570. McCraty, R., Synchronization of Human Autonomic Nervous System Rhythms with Geomagnetic Activity in Human Subjects, Int. J. Environ. Res. Public Health, 14(7), 770, 2017.
  571. Orozco-Del-Castillo, M., High solar activity predictions through an artificial neural network, Internat. J. Modern Phys., C 28, 06, 2017.
  572. Sihver, L., Berger, T., The DOSIS and DOSIS 3D project on-board the ISS - Current status and scientific overview, Proc. Aerospace Conference, 2017 IEEE DOI: 10.1109/AERO.2017.7943810
  573. Ehresmann, B., J. Cary, D. Zeitlin et al., The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016, Life Sci. Space Res., 14, 3-11, 2017.
  574. Abbrescia, M., C. Avanzinia, L.Baldini et al., The EEE project - Science in schools: state and results, Nucl. Part. Phys. Procs., 291, 110-113, 2017.
  575. Ugochukwu, O., Okpala Kingsley C., Tsor James O, and Egbunu Friday, Variability of quiet-time diurnal amplitude and phase of cosmic ray count rates in the mid- and high latitudes, Intern. J. Phys. Sci., 12, 295-307, 2017.
  576. Shabir Ahmad, P. R. Singh, A. K. Saxena, C. M. Tiwari, Variation of Solar Activity Parameters with Cosmic Ray intensity and Comparison of Solar Cycle 23-24, Int. J. Sci. Res. Sci. Eng. Tech., 3, 324-327, 2017.
  577. Moraes, J. F. et al., Long-term observation of nighttime clouds over São João do Cariri (7.4º S, 36.5º W), J. Environ. Sci. and Engin., A 6, 431-438, 2017.
  578. Adriani, O. et al., Ten years of PAMELA in space , Rivista del Nuovo Cimento, 10, 473-522, 2017.
  579. Donder E.D., N. Crosby, M. Kruglanski et al., Services for Space Mission Support Within The ESA Space Situational Awareness Space Weather Service Network, J Aeronaut Aerospace Eng., 6, 180, 2017.

    2018

  580. M. Livada, E. Mavromichalaki and C. Plainaki, Galactic cosmic ray spectral index: the case of Forbush decreases of March 2012, Astrophys. Space Sci. 363:8, 2018.
  581. Tortermpun, U., D. Ruffolo, J. W. Bieber, Galactic cosmic-ray anistropy during the Forbush decrease starting 2013 April 13, Astrophys. J. Lett., 852: L26, 2018.
  582. Munini, R. et al., Evidence of energy and charge sign dependence of the recovery time for the 2006 December Forbush event measured by the PAMELA experiment, Astrophys. J., 853:76, 11 pp, 2018.
  583. Raukunen, O. et al., Two solar proton fluence models based on ground level enhancement observations, J. Space Weather Space Clim., 8, A04, 2018.
  584. Meier, M. M., D. Matthiae, Classification and communication of aviation related space weather radiation events, SF J. Aviation Aeronaut. Sci., 1(1): 1002, 2018.
  585. Buetikofer, R., Ground-based measurements of energetic particles by neutron monitors. In: Malandraki O., Crosby N. (eds) Solar particle radiation storms forecasting and analysis, Astrophys. Space Sci. Lib., v. 444, 95-111, Springer, Cham, 2018.
  586. Heber, B. et al., Inversion methodology of ground level enhancements. In: Malandraki O., Crosby N. (eds) Solar particle radiation storms forecasting and analysis, Astrophys. Space Sci. Lib., v. 444, 179-199, Springer, Cham, 2018.
  587. Santiago, A. et al., New method to calculate the time variation of the force field parameter, J. Geophys. Res.: Space Phys., 123, 1731–1737, 2018.
  588. He, J., J. V. Rodriguez, Onsets of solar proton events in satellite and ground level observations: A comparison, Space Weather, 16, 245-260, 2018.
  589. Cliver, E.W., K. Herbst, Evolution of the sunspot number and solar wind B time series, Space Sci. Rev., 214: 56, 1-31, 2018.
  590. Samara, E. et al., Unusual cosmic ray variations during the Forbush decreases of June 2015, Solar Phys., 293:67, 1-17, 2018.
  591. Koldobskiy, S. A., G. A Kovaltsov, I. G., Usoskin, A solar cycle of cosmic ray fluxes for 2006-2014: Comparison between PAMELA and neutron monitors, J. Geophys. Res.: Space Phys., 123, 4479-4487, 2018.
  592. Kataoka, R. et al., Radiation dose nowcast for the ground level enhancement on 10--11 September 2017, Space Weather, 16, 917-923, 2018.
  593. Kurt, V. et al., Some characteristics of the GLE on 10 September 2017, Contrib. Astron. Obs. Skalnate Pleso, 48, 329-338, 2018.
  594. Belov, A.V. et al., Global survey method for the world network of neutron monitors, Geomagn. Aeron., 58:3, 356-372, 2018.
  595. Kurt, V. et al., Some characteristics of GLE on 2017 September 10, Contrib. Astron. Obs. Skalnate Pleso, 35, 1-11, 2018.
  596. Sato, T. et al., Real time and automatic analysis program for WASAVIES: Warning system for aviation exposure to solar energetic particles, Space Weather, 16, 924-936, 2018.
  597. Berger, T. et al., The solar particle event on 10 September 2017 as observed onboard the International Space Station (ISS), Space Weather, 16, 1173-1189, 2018.
  598. Gil, A., K. Mursula, Comparing two intervals of exceptionally strong solar rotation recurrence of galactic cosmic rays, J. Geophys. Res.: Space Phys., 123, 6148-6160, 2018.
  599. Matthiae, D., M. M. Meier, T. Berger, The solar particle event on 10-13 September 2017: Spectral reconstruction and calculation of the radiation exposure in aviation and space, Space Weather, 16, 977-986, 2018.
  600. Copeland, K., D. Matthiae, M. M. Meier, Solar cosmic ray dose rate assessments during GLE 72 using MIRA and PANDOCA, Space Weather, 16, 969-976, 2018.
  601. Koldobskiy, S. A., G. A. Kovaltsov, I. G. Usoskin, Effective rigidity of a Polar neutron monitor for recording ground-level enhancements, Sol. Phys., 293:110, 1-9, 2018.
  602. Redmon, R. J. et al., September 2017’s geoeffective space weather and impacts to Caribbean radio communications during hurricane response, Space Weather, 16, 1190-1201, 2018.
  603. Aguilar, M. et al., Observation of fine time structures in the cosmic proton and helium fluxes with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett., 121, 051101, 1-7, 2018.
  604. Kocharov, L., S. Pohjolainen, M. J. Reiner, A. Mishev, H. Wang, I. Usoskin, R. Vainio, Spatial organization of seven extreme solar energetic particle events, Astrophys. J. Lett., 862: L20, 6pp, 2018
  605. Padilla-Cueto, D. et al., Influence of cosmophysical activity on monthly mortality due to myocardial infarction, CorSalud, 10(2), 146-151, 2018.
  606. Chertok, I. M., Diagnostic analysis of the solar proton flares of September 2017 by their radio bursts, Geomagn. Aeron., 58:4, 457-463, 2018.
  607. Palcsu, L. et al., Modulation of cosmogenic tritium in meteoric precipitation by the 11-year cycle of solar magnetic field activity, Nature Sci. Rep., 8, 12813, 2018.
  608. Singh, S., P. K. Chamadia, P. R. Singh, H-CMEs and X-class solar flare related Forbush decreases with solar wind disturbances, Intern. J. Res. Anal. Rev., 5:3, 611𝗒-614y, 2018.
  609. Mishev, A., I. Usoskin, O. Raukunen, M. Paassilta, E. Valtonen, L. Kocharov, R. Vainio, First analysis of ground-level enhancement (GLE) 72 on 10 September 2017: spectral and anisotropy characteristics, Sol. Phys., 293: 136, 2018.
  610. Mishra, V. K., A. P. Mishra, Long-term modulation of cosmic-ray intensity and correlation analysis using solar and heliospheric parameters, Sol. Phys., 293:141, 2018.
  611. Barrantes, M. et al., Atmospheric corrections of the cosmic ray fluxes detected by the Solar Neutron Telescope at the Summit of the Sierra Negra Volcano in Mexico, Geofísica Internacional, 57-4: 253-275, 2018.
  612. Cohen, C. M. S., R. A. Mewaldt, The ground-level enhancement event of September 2017 and other large solar energetic particle events of cycle 24, Space Weather, 16, 1616-1623, 2018.
  613. Dubey, A., S. Kumar, S. K. Dubey, Variation in diurnal phase of cosmic ray intensity during 1986-2017, Res. & Rev.: J. Phys., 7:3, 20-23, 2018.
  614. Tacza, J. et al., Solar effects on the atmospheric electric field during 2010-2015 at low latitudes, J. Geophys. Res.: Atmospheres, 123, 1-10, 2018.
  615. Mavromichalaki, H. et al., Real-time detection of the ground level enhancement on 10 September 2017 by A.Ne.Mo.S.: System report, Space Weather, 16, 1-9, 2018.
  616. Chowdhury, P., K. Kudela, Quasi-periodicities in cosmic rays and time lag with the solar activity at a middle latitude neutron monitor: 1982-2017, Astrophys. Space Sci., 363: 250, 2018.
  617. Mishev, A. L., I. G. Usoskin, Assessment of the radiation environment at commercial jet‐flight altitudes during GLE 72 on September 10, 2017 using neutron monitor data, Space Weather, doi: 10.1029/2018SW001946, 2018.
  618. Gil, A., G. A. Kovaltsov, V. V. Mikhailov, A. Mishev, S. Poluianov, I. G. Usoskin, An anisotropic cosmic-ray enhancement event on 07-June-2015: A possible origin, Solar Phys., 293:154, 2018.
  619. Miroshnichenko, L. I., Retrospective analysis of GLEs and estimates of radiation risks, J. Space Weather Space Clim., 8, A52, 35 pp, 2018.
  620. Jiggens, P., C. Clavie, H. Evans, et al., In-situ data and effect correlation during September 2017 solar particle event, Space Weather, doi: 10.1029/2018SW001936, 2018.
  621. Boschini, M. J. et al., Propagation of cosmic rays in heliosphere: The HELMOD model, Adv. Space Res., 62:10, 2859-2879, 2018.
  622. Gopalswamy, N. et al., Extreme kinematics of the 2017 September 10 solar eruption and the spectral characteristics of the associated energetic particles, Astrophys. J. Lett., 863: L39, 6pp, 2018.
  623. Zhu, Cheng-Rui, Yuan Qiang, Wei Da-Ming, Studies on cosmic-ray nuclei with Voyager, ACE, and AMS-02. I. Local interstellar spectra and solar modulation, Astrophys. J., 863:119, 10pp, 2018.
  624. Zhao, M.-X., G.-M. Le, Y.-T. Chi, Investigation of the possible source for the solar energetic particle event on 2017 September 10, Res. Astron. Astrophys., 18:7, 074, 13 pp, 2018.
  625. Tuohino, S., A. Ibragimov, I. Usoskin, A. Mishev, Upgrade of GLE database: Assessment of effective dose rate at flight altitude, Adv. Space Res., 62:2, 398-407, 2018.
  626. Augusto, C. R. A. et al., The 2015 summer solstice storm: one of the major geomagnetic storms of Solar cycle 24 observed at ground level , Solar Phys., 293:84, 28 pp, 2018.
  627. Chilingarian, A. et al., The SEVAN Worldwide network of particle detectors: 10 years of operation, Adv. Space Res., 61:10, 2680-2696, 2018.
  628. Miroshnichenko, L. I. , Solar cosmic rays: 75 years of research, Phys.-Usp., 61:4, 323, 2018.
  629. Velasco Herrera, V. M. et al., The quasi-biennial oscillation of 1.7 years in ground level enhancement events, New Astron., 60, 7-13, 2018.
  630. Armano, M. et al., Measuring the Galactic Cosmic Ray flux with the LISA Pathfinder radiation monitor, Astropart. Phys., 98, 28-37, 2018.
  631. Armano, M. et al., Characteristics and energy dependence of recurrent Galactic Cosmic-Ray flux depressions and of a Forbush decrease with LISA Pathfinder, Astrophys. J., 854:113, 12pp, 2018.
  632. Munini, R. et al., Evidence of energy and charge sign dependence of the recovery time for the 2006 December Forbush event measured by the PAMELA experiment, Astrophys. J., 853:76, 11pp, 2018.
  633. Mishev, A. L., P. I. Y. Velinov, Ion production and ionization effect in the atmosphere during the Bastille day GLE 59 due to high energy SEPs, Adv. Space Res., 61:1, 316-325, 2018.
  634. Modzelewska, R., M. V. Alania, Quasi-periodic changes in the 3D solar anisotropy of Galactic cosmic rays for 1965-2014,Astron. Astrophys., 609, A32, 7pp, 2018.
  635. Wu C.-J., N. A. Krivova, S. K. Solanki, I. G. Usoskin, Solar total and spectral irradiance reconstruction over the last 9000 years, Astron. Astrophys., 12 pp, 2018.
  636. Oh, S., Y. Yi, P. Evenson, Influence of solar wind structure on cosmic ray modulation during epochs of alternate solar magnetic polarity, Phys. Plasmas, 25:10, 102902, 2018.
  637. Simon, Q. et al., Increased production of cosmogenic 10Be recorded in oceanic sediment sequences: Information on the age, duration, and amplitude of the geomagnetic dipole moment minimum over the Matuyama-Brunhes transition, Earth Plan. Sci. Lett., 489, 191-202, 2018.
  638. Vieira, C. L. Z. et al., Long-term association between the intensity of cosmic rays and mortality rates in the city of Sao Paulo, Environ. Res. Lett., 13, 024009, 8pp, 2018.
  639. Beer, J., S. M. Tobias, N. O. Weiss, On long-term modulation of the Sun's magnetic cycle, Month. Not. Royal Astronom. Soc., 473:2, 1596-1602, 2018.
  640. Rodenko, S. A. et al., Solar flare activity in 2006 - 2016 according to PAMELA and ARINA spectrometers, J. Phys.: Conf. Series, 945:1, 012026, 2018.
  641. Katsova, M. M., L. L. Kitchatinov, M. A. Livshits, D. L. Moss, D. D. Sokoloff, I.G. Usoskin, Can superflares occur on the Sun? A view from dynamo theory, Astronomy Reports, 62:1, 72-80, 2018.
  642. Mattana, V. W. F., G. R. Drevin, R. D. Stauss, Extracting the February 1956 Ground Level Enhancement event from legacy cosmic ray recordings, A. Fornes and B. Lamiroy (Eds.): GREC 2017, LNCS 11009, 131-143, 2018.
  643. Tobiska, K.W., M.M.Meier, D. Matthiä, K. Copeland, Characterizing the Variation in Atmospheric Radiation at Aviation Altitudes, in: Extreme Events in Geospace, Origins, Predictability, and Consequences, 453-471, Springer Verlag, 2018.
  644. Melkumyan, A.A., A. V. Belov, M.A. Abunina, A.A. Abunin, E.A. Eroshenko, V.A. Oleneva, V.G. Yanke, Size Distribution of Forbush Effects, Geomagn. Aeron., 58, 809, 2018.
  645. Ishkov, V.N., Space Weather and Specific Features of the Development of Current Solar Cycle, Geomagn. Aeron., 58, 753, 2018.
  646. Stanislawska, I., T.L. Gulyaeva, O. Grynyshyna-Poliuga, L.V. Pustovalova, Ionospheric weather during five extreme geomagnetic superstorms since IGY deduced with the instantaneous global maps GIM-foF2, Space Weather, 16, 2018, doi:10.1029/2018SW001945.
  647. Mitrofanov, I., A. Malakhov, B. Bakhtin, et al., Fine Resolution Epithermal Neutron Detector (FREND) Onboard the ExoMars Trace Gas Orbiter, Space Sci. Rev., 214. 86, 2018.
  648. Okhlopkov, V.P., Quasiperiodic Variations of Solar Activity and Cosmic Rays, Moscow Univ. Phys., 73, 223, 2018.
  649. Meier M.M., D. Matthiä, Classification and Communication of Aviation Related Space Weather Radiation Events, S.F. J. Aviation Aeronaut Sci., 1, 1002, 2018.
  650. Ishkov, V. N., Space weather and specific features of the development of current solar cycle, Geomagn. Aeron. , 58:6, 753–767, 2018.
  651. Park, Eun Ho et al., Solar cyclic modulation of diurnal variation in cosmic ray intensity, J. Astron. Space Sci., 35(4), 219-225, 2018.

    2019

  652. Ishkov, V. N., Space weather and specific features of the development of current solar cycle, Geomagn. Aeron. , 58:6, 753–767, 2018.
  653. Hubert, G. et al., Analysis of the Forbush decreases and ground‐level enhancement on September 2017 using neutron spectrometers operated in Antarctic and midlatitude stations, J. Geophys. Res.: Space Phys., 124:1, 661-673, 2019.
  654. Park, Eun Ho et al., Solar cyclic modulation of diurnal variation in cosmic ray intensity, J. Astron. Space Sci., 35(4), 219-225, 2018.
  655. Väisänen, P., I. Usoskin, K. Mursula, Long‐term and solar cycle variation of galactic cosmic rays: evidence for variable heliospheric turbulence, J. Geophys. Res.: Space Phys., 124:2, 804-811, 2019.
  656. Okike, O., A. E. Umahi, The empirical implication of conducting a Chree analysis using data from isolated neutron monitors, Solar Phys., 294:16, 21 pp, 2019.
  657. Mishev, A. , P. Jiggens, Preface to measurement, specification and forecasting of the Solar Energetic Particle (SEP) environment and Ground Level Enhancements (GLEs), J. Space Weather Space Clim., 9, E1, 4pp, 2019.
  658. Kurt, V. et al., Onset time of the GLE 72 observed at neutron monitors and its relation to electromagnetic emissions, Solar Phys., 294:22, 18pp, 2019.
  659. Badruddin, B. et al., Forbush decreases and geomagnetic storms during a highly disturbed solar and interplanetary period, 4–10 September 2017, Space Weather, 17, 487–496, 2019.
  660. Singh, Y. P., Badruddin, Study of the solar rotational period and its harmonics in solar activity, interplanetary, geomagnetic, and cosmic ray intensity indicators during solar polarity reversal periods, Solar Phys., 294:27, 16pp, 2019.
  661. Firoz, K. A. et al., On the possible mechanism of GLE initiation, Astrophys. J., 872:178, 13pp, 2019.
  662. Armano, M. et al., Forbush decreases and <2Day GCR flux non-recurrent variations studied with LISA Pathfinder, Astrophys. J., 874:167, 15pp, 2019.
  663. Goryacheva, V. S., V. V. Mikhailov, S. A. Voronov, The development of solar neutron search method with PAMELA neutron detector, J. Phys.: Conf. Series, 1189:1, 012004, 2019.
  664. Saad Farid, A. I., High frequency spectral features of galactic cosmic rays at different rigidities during the ascending and maximum phases of the solar cycle 24, Astrophys. Space Sci., 364:57, 6pp, 2019.
  665. Alexeev, V. A. et al., Cosmogenic radionuclides in meteorites and solar modulation of galactic cosmic rays in the internal heliosphere, Solar Sys. Res., 53:2, 98–115, 2019.
  666. Maghrabi, A., K. Kudela, Relationship between time series cosmic ray data and aerosol optical properties: 1999–2015, J. Atmospher. Sol.-Terr. Phys., 190, 36-44, 2019.
  667. Picozza, P., L. Marcelli, The legacy of PAMELA, Adv. Space Res., in press !!!!
  668. Mishev, A., I. Usoskin, Analysis of sub-GLE and GLE events using NM data: space weather applications, J. Phys.: Conf. Series, 1181:1, 012006, 6pp, 2019.
  669. Mishev, A. , I. Usoskin, S. Tuohino, A. Ibragimov, The upgraded GLE database includes assessment of radiation exposure at flight altitudes, J. Phys.: Conf. Series, 1181:1, 012061, 6pp, 2019.
  670. Lingri, D. et al., An extended study of the precursory signs of Forbush decreases: new findings over the years 2008 – 2016, Solar Phys., , 294:70, 18 pp, 2019.
  671. Luo, Xi et al., A numerical study of cosmic proton modulation using AMS-02 observations, Astrophys. J., 878:6, 12pp, 2019.
  672. Xu, H. et al., High-resolution records of 10Be in endogenic travertine from Baishuitai, China: A new proxy record of annual solar activity?, Quaternary Sci. Rev., 216, 34-46, 2019.
  673. Makhmutov, V. S. et al., Solar activity and cosmic ray variations in September 2017, Bull. Russ. Acad. Sci.: Phys. , 83:5, 543–546, 2019.
  674. Sarp, V. et al., Cosmic ray modulation with the maximum CME speed index during solar cycles 23 and 24, Solar Phys., 294:86, 11pp, 2019.
  675. Koldobskiy, S. A., G. A. Kovaltsov, A. L. Mishev, I. G. Usoskin, New method of assessment of the integral fluence of solar energetic (> 1 GV rigidity) particles from neutron monitor data, Solar Phys.,, 294:94, 18pp, 2019.
  676. Zeitlina, C. et al., Measurements of radiation quality factor on Mars with the Mars Science Laboratory Radiation Assessment Detector, Life Sci. Space Res., 22, 89-97, 2019.
  677. Okike, O., Chree method of analysis: a critique of its application to Forbush events selection criteria and timing, Astrophys. J. , 882:15, 12pp, 2019.
  678. Ghanbari, K. et al., Galactic cosmic rays modulation in the vicinity of corotating interaction regions: observations during the last two solar minima, Astrophys. J. , 882:54, 10pp, 2019.
  679. Singh, P. R. et al., Periodicity variation of solar activity and cosmic rays during solar cycles 22 – 24, Solar Phys., 294:118, 14pp, 2019.
  680. Wu, Qiong, Hui Li, Chi Wang, Lightning response during Forbush decrease in the tropics and subtropics, J. Atmospher. Sol.-Terr. Phys., 195, 105134, 8pp, 2019.
  681. Firoz, K. A. et al., On the relation between flare and CME during GLE-SEP and Non-GLE-SEP events, Astrophys. J., 883:91, 15pp, 2019.
  682. Yeeram, T., Asymmetric latitudinal gradients of galactic cosmic rays at low and high cutoff rigidities in two negative solar magnetic cycles: solar cycles 21/22 and 23/24, Solar Phys., 294:132, 20pp, 2019.
  683. Taneev, S. N. et al., Solar cosmic ray acceleration by a shock wave in the lower solar corona on November 22, 1977, J. Experim. Theor. Phys., 129:3, 375–385, 2019.
  684. Dorman, L. et al., Is it possible to organize automatic forecasting of expected radiation hazards level from Solar Cosmic Ray (SCR) events for spacecraft in the heliosphere and magnetosphere and for aircraft in the low atmosphere? , Adv. Space Res., in press!!!
  685. Pérez-Peraza, J., J. C. Márquez Adame, An alternative classification of solar particle events that reach the earth ground level, Phys. Astron. Int. J., 3:5, 161‒170, 2019.
  686. Modzelewska, R. et al., Features of the galactic cosmic ray anisotropy in solar cycle 24 and solar minima 23/24 and 24/25, Solar Phys., 294:148, 16pp, 2019.
  687. Hu, Z. M. et al., Measurements of cosmic ray induced background neutrons near the ground using a Bonner sphere spectrometer, Nucl. Inst. Meth. Phys. Res., A, 940, 78-82, 2019.
  688. Yamagata, T. et al., Decadal variations of atmospheric 7Be and 10Be concentrations between 1998 and 2014 in Japan, Nucl. Inst. Meth. Phys. Res. , B, 455, 265-270, 2019.
  689. Christodoulakis, J. et al., On the link between atmospheric cloud parameters and cosmic rays, J. Atmosph. Sol.-Terr. Phys. , 189, 98-106, 2019.
  690. Koldobskiy, S. A., V. Bindi, C. Corti, G. A. Kovaltsov, I. G. Usoskin, Validation of the neutron monitor yield function using data from AMS-02 experiment, 2011-2017, J. Geophys. Res.: Space Phys., 124:4, 2367-2379, 2019.
  691. Bruno, A. et al., Spectral analysis of the September 2017 solar energetic particle events, Space Weather, 17:3, 419-437, 2019.
  692. Talha, M., A. Nabeel, M. Ghulam, Study the behavior of the ionospheric frequencies at Karachi during three consecutive solar minima of cycle 21, 22 & 23 and their comparison with IRI-2016, Adv. Space Res. , 63:6, 1905-1913, 2019.
  693. Augusto, C. R. A. et al., Relativistic proton levels from region AR 12673 (GLE #72) and the heliospheric current sheet as a sun-earth magnetic connection, Publications Astronom. Soc. Pacific, 131:996, 024401, 2019.
  694. Savic, M. et al., Rigidity dependence of Forbush decreases in the energy region exceeding the sensitivity of neutron monitors, Adv. Space Res., 63:4, 1483-1489, 2019.
  695. Ross, E., W. J. Chaplin, The behaviour of galactic cosmic-ray intensity during solar activity cycle 24, Sol. Phys., 294:8, 17 pp, 2019.
  696. Hu, Z. M. et al., Measurements of cosmic ray induced background neutrons near the ground using a Bonner sphere spectrometer, Nucl. Inst. Meth. Phys. Res., A, 940, 78-82, 2019.
  697. Lee, Y. J. et al., Long-term variations of Venus’s 365 nm Albedo observed by Venus Express, Akatsuki, MESSENGER, and the Hubble space telescope, Astronom. J., 158:126, 16 pp, 2019.
  698. Rozanov, E., C. Dyer, T. Sukhodolov and A. Feinberg, Extreme Solar Particle Storms, The hostile Sun, Chapter 8: Possible Impacts, 32 pp, 2019.
  699. Dorman, L., Y. Tassev, P. I. Y. Velinov, A. Mishev, D. Tomova and L. Mateev, Investigation of exceptional solar activity in September 2017: GLE 72 and unusual Forbush decrease in GCR, J. Phys. Conf. Ser., 1181, 012070, 2019.
  700. Friday, E., O. K. Chukwudi, On the slow-time geomagnetic field modulation of cosmic rays, Int. J. Phys. Sci., 14(15), 171-186, 2019.
  701. Berger, K. et al., The German Aerospace Center M-42 radiation detector—A new development for applications in mixed radiation fields, Rev. Sci. Instrum., 90, 125115, 13pp, 2019.
  702. Lagoida, I. A., et al., Origin of the short-term variations of the cosmic ray flux, Phys. Particles Nuclei , 50, 826–835, 2019.

    2020

  703. Yang, Zi-Yi, Rong-Jiun Sheu, An in-depth analysis of aviation route doses for the longest distance flight from Taiwan, Radiation Phys. Chem., 168, 108548, 6 pp, 2020.
  704. Okike, O., What determines the observational magnitudes of Forbush events on Earth: A critique of the traditional manual method, Monthly Notices Royal Astron. Soc., 491:3, 3793–3804, 2020.
  705. Perez-Peraza, J.A., J.C. Marquez-Adame, R.A.Caballero-Lopez, R.R. Manzano Islas, Spectra of the two official GLEs of solar cycle 24, Adv. Space Res., 65, 663-676, 2020.
  706. Siluszyk, M., Iskra, K. Modeling the Time Delay Problem of Galactic Cosmic Ray Flux in Solar Cycles 21 and 23. Sol Phys 295, 68, 2020.
  707. Litvak, M.L., Sanin, A.B., Mitrofanov, I.G., Bakhtin, B., Jun, I., Martinez-Sierra, L.M., Nosov, A.V., and Perkhov, A.S., Planet. Space Sci., 184, 104866, 2020.
  708. Chowdhury, R., Stoffle, N.N., Rios, R.R., Stegeman, L.A., and Bahadori, A.A., Radiat. Phys. Chem., 172, 108736, 2020.
  709. Kusano, K., E. Cliver, H. Hayakawa, G. A. Kovaltsov, I. G. Usoskin, Extreme Solar Particle Storms ,The Hostile Sun, Chapter 2: What can be learned from modern data?, 38pp, 2020.
  710. Singh, A.K., A. Bhargawa, Delineation of possible influence of solar variability and galactic cosmic rays on terrestrial climate parameters, Adv. Space Res. , 65:7, 1831-1842, 2020.
  711. Chowdhury, R. Pal et al., A novel, population-based approach to astronaut radiation risk assessment, Radiation Phys. Chem., 172, 108736, 8pp, 2020.
  712. Kocharov, L., M. Pesce-Rollins, T. Laitinen, A. Mishev, P. Kühl, A. Klassen, M. Jin, N. Omodei, F. Longo, D. F. Webb, Interplanetary protons versus interacting protons in the 2017 September 10 solar eruptive event, Astrophys. J., 890:13, 13pp, 2020.
  713. Mishev, A. L., S. A. Koldobskiy, G. A. Kovaltsov, A. Gil, I. G. Usoskin, Updated neutron monitor yield function: bridging between in situ and ground based cosmic ray measurements, J. Geophys. Res.: Space Phys., 125:2, e2019JA027433, 11pp, 2020.
  714. Guo, J. et al., A new model describing Forbush decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth Plan. Phys.,4, 62–72, 2020.
  715. Oloketuyi, J. et al., Responses and periodic variations of cosmic ray intensity and solar wind speed to sunspot numbers, Adv. Astron. , 2020, 3527570, 10 pp, 2020.
  716. Okike, O., O. C. Nwuzor, Investigation of the rigidity and sensitivity dependence of neutron monitors for cosmic ray modulation using algorithm-selected Forbush decreases, Month. Not. Royal Astron. Soc., 493:2, 1948–1959, 2020.
  717. Kilifarska, N. A. et al., The geomagnetic field's imprint on the twentieth century's climate variability, Geolog. Soc., London, Spec. Publ., 497, 205-227, 2020.
  718. Shaikh, Z. I., A. N. Raghav, G. Vichare, Evolution of planar magnetic structure within the stream interaction region and its connection with a recurrent Forbush decrease, Month. Not. Royal Astron. Soc., 494:4, 5075–5080, 2020.
  719. Mishev, A., I. Usoskin, Current status and possible extension of the global neutron monitor network, J. Space Weather Space Clim., 10, 17, 11pp, 2020.
  720. László, E., L. Palcsu, A. Leelőssy, Estimation of the solar-induced natural variability of the tritium concentration of precipitation in the Northern and Southern Hemisphere, Atmosph. Environ., 233, 117605, 10pp, 2020.
  721. Siluszyk, M., K. Iskra, Modeling the time delay problem of galactic cosmic ray flux in solar cycles 21 and 23, Solar Phys., 295:68, 13pp, 2020.
  722. Maurin, D. et al., Cosmic-ray database update: ultra-high energy, ultra-heavy, and anti-nuclei cosmic-ray data (CRDB v4.0), Universe, 5, 010005, 58pp, 2020.
  723. Golubenko, K. , E. Rozanov, I. Mironova, A. Karagodin, I. Usoskin, Natural sources of ionization and their impact on atmospheric electricity, Geophys. Res. Lett., 47:12, e2020GL088619, 9pp, 2020.
  724. Miroshnichenko, L. I., C. Lic, V. G. Yanke, Minor ground level enhancements in the solar cosmic rays in the 24th solar activity cycle, Cosmic Research, 58:3, 150–157, 2020.
  725. Abunina, M.A. et al., Ring of stations method in cosmic rays variations research, Solar Phys., 295:69, 20pp, 2020.
  726. Usoskin, I., S. Koldobskiy, G. A. Kovaltsov, A. Gil, I. Usoskina, T. Willamo, A. Ibragimov, Revised GLE database: Fluences of solar energetic particles as measured by the neutron-monitor network since 1956, Astron. Astrophys., 640, A17, 18pp, 2020.
  727. Poje Sovilj, M. et al., Potential benefit of retrospective use of neutron monitors in improving ionising radiation exposure assessment on international flights: issues raised by neutron passive dosimeter measurements and EPCARD simulations during sudden changes in solar activity,Arh Hig Rada Toksikol, 71, 152-157, 2020.
  728. Grazzi, S. et al., AstrO: A portable cosmic ray telescope, Nucl. Inst. Meth. Phys. Res., A , 976, 164275, 9pp, 2020.
  729. Light, C. et al., Interplanetary coronal mass ejection associated Forbush decreases in neutron monitors, Astrophys. J., 896:133, 14pp, 2020.
  730. López-Comazzi, A., J. J. Blanco, Short-term periodicities observed in neutron monitor counting rates,Solar Phys., 295:81, 32pp, 2020.
  731. Ferreira, A. A. et al., Identification of potential precursors for the occurrence of large-scale traveling ionospheric disturbances in a case study during September 2017, J. Space Weather Space Clim., 10, 32, 17pp, 2020.
  732. Okpala, K. C., S. A. Abejoye, J. Tsor, Effect of some solar energetic events on cosmic ray (CR) ground level enhancement (GLE), Int. J. Astrophys. Space Sci., 8:1, 1-10, 2020.
  733. Battiston, R.,High precision cosmic ray physics with AMS-02 on the International Space Station, La Rivista del Nuovo Cimento, 43, 319–384, 2020.
  734. Abbrescia, M. et al., New high precision measurements of the cosmic charged particle rate beyond the Arctic Circle with the PolarquEEEst experiment, Eur. Phys. J. C, 80, 665, 20pp, 2020.
  735. Lishnevskii, A. E., V. V. Benghin, Results of separation of the galactic cosmic rays and Earth’s inner radiation belt contributions to the daily dose obtained by DB-8 dosimeters of the radiation monitoring system onboard the International Space Station in 2001–2014, Cosmic Research, 58:4, 307–315, 2020.
  736. Berger, T. et al., Long term variations of galactic cosmic radiation on board the International Space Station, on the Moon and on the surface of Mars, J. Space Weather Space Clim., 10, 34, 20pp, 2020.
  737. Miroshnichenko, L. I., C. Li, V. G. Yank, Small size ground level enhancements during solar cycle 24, Solar Phys., 295:102, 20pp, 2020.
  738. Strauss, D. T., S. Poluianov, C. van der Merwe, H. Kruger, C. Diedericks, H. Kruger, I. Usoskin, B. Heber, R. Nndanganeni, J. Blanco- Avalos, I. Garcıa-Tejedor, K. Herbst, R. Caballero-Lopez, K. Moloto, A. Lara, M. Walter, N. M. Giday, R. Traversi, The mini-neutron monitor: A new approach in neutron monitor design, J. Space Weather Space Clim., 10, 39, 13pp, 2020.
  739. Okpala, K. C., D. F. Kalu, N. O. Njoku-Achu, Heliospheric modulation of GCR at mid and high latitudes, Phys. Sci. Int. J., 24:6, 44-55, 2020.
  740. Sato, T., Recent progress in space weather research for cosmic radiation dosimetry, Annals ICRP, doi:10.1177/0146645320933401, 2020.
  741. Livada, M., H. Mavromichalaki, Spectral analysis of Forbush decreases using a new yield function, Solar Phys., 295:115, 16pp, 2020.
  742. Cliver, E. W., F. Mekhaldi, R. Muscheler, Solar longitude distribution of high-energy proton flares: fluences and spectra, Astrophys. J. Lett., 900:L11, 7pp, 2020.
  743. Poluianov, S. V., G. A. Kovaltsov, I. G. Usoskin, A new full 3-D model of cosmogenic tritium 3H production in the atmosphere (CRAC:3H), JGR Atmosph., 125:18, e2020JD033147, 11pp, 2020.
  744. Jeong, J., S. Oh , Seasonal variation of cosmic ray intensity observed by the Oulu neutron monitor, J. Astron. Space Sci., 37:3, 165-170, 2020.
  745. Benella, S. et al., A new method to model magnetic cloud-driven Forbush decreases: The 2016 August 2 event, Astrophys. J., 901:21, 10pp, 2020.
  746. Okike, O., Automated detection of simultaneous/non-simultaneous Forbush decreases and the associated cosmic ray phenomena, J. Atmosph. Sol.-Terr. Phys., 211, 105460, 2020.
  747. Gil, A. et al., The solar event of 14 – 15 July 2012 and its geoeffectiveness, Solar Phys., 295, 135, 16pp, 2020.
  748. Kuhar, M., R. Čop, P. P. Prešeren, The influence of the Moon on geomagnetic noise, Geodetski vestnik, 64:3, 17pp, 2020.
  749. Janssens, J. et al., Space weather: The impact on security and defense, In: Schrogl KU. (eds), Handbook of Space Security, Springer, Cham., 1005-1024, 2020.
  750. Mishev, A.L., P. I. Y. Velinov, Ionization effect in the Earth’s atmosphere during the sequence of October–November 2003 Halloween GLE events, J. Atmosph. Sol.-Terr. Phys., 211, 105484, 2020.
  751. Okike, O., Forbush decreases: algorithm generated dataset, Data Brief, in Press, 37pp, 2020.
  752. Hayakawa, H. et al., The intensity and evolution of the extreme storms in January 1938, Astrophys. J., DOI: 10.3847/1538-4357/abc427, 40pp, 2020.
  753. Cliver, E. W. et al., On the size of the flare associated with the solar proton event in 774 AD, Astrophys. J., 903:41, 16pp, 2020.
  754. Gburi, Sura I., Najat M. R. AL-Ubaidi, Investigation of the cosmic rays associated with ground level enhancement events during solar cycle 24, J. Phys.: Conf. Ser., 1664, 012023, 20pp, 2020.
  755. Modzelewska, R. et al., Study of the 27 Day variations in GCR fluxes during 2007–2008 based on PAMELA and ARINA observations, Astrophys. J., 904:3, 13pp, 2020.
  756. Grimani, C. et al., Recurrent galactic cosmic-ray flux modulation in L1 and geomagnetic activity during the declining phase of the solar cycle 24, Astrophys. J., 904:64, 14pp, 2020.
  757. Roussos, E. et al., Long- and short-term variability of galactic cosmic-ray radial intensity gradients between 1 and 9.5 au: Observations by Cassini, BESS, BESS-Polar, PAMELA, and AMS-02, Astrophys. J., 904:165, 15pp, 2020.
  758. Lagoida, I. A. et al, Rigidity dependences of the main characteristics of Forbush decreases, J. Phys.: Conf. Ser., 1690, 012009, 4pp, 2020.
  759. Struminsky, A. B. et al., Two types of gradual events: solar protons and relativistic electrons, Geomagn. Aeron., 60, 1057–1066, 2020.

    2021

  760. Aguilar, M., ...S. Poluianov, ... I. Usoskin, ... P. Zuccon, Periodicities in the daily proton fluxes from 2011 to 2019 measured by the Alpha Magnetic Spectrometer on the International Space Station from 1 to 100 GV, Phys. Rev. Lett., 127, 271102, 8pp, 2021.
  761. Gololobov, P. Yu. et al., Studies of heliospheric modulation of cosmic rays at ShICRA SB RAS and prospects of their further development, Phys. Atomic Nuclei, 84:6, 1087–1097, 2021.
  762. Golubenko, K., E. Rozanov, G. Kovaltsov, A.-P. Leppänen, T. Sukhodolov, and I. Usoskin, Application of CCM SOCOL-AERv2-BE to cosmogenic beryllium isotopes: description and validation for polar regions, Geosci. Model Dev., 14:12, 7605–7620, 2021.
  763. Borog, V. V., S. F. Timashev, Variations in cosmic rays before powerful earthquakes, Bull. Russ. Acad. Sci. Phys., 85, 1328–1331, 2021.
  764. Potgieter, M. S. et al., Perspective on the solar modulation of cosmic anti-matter, Physics, 3, 1190–1225, 2021.
  765. Mavromichalaki, H. et al., Human physiological parameters related to solar and geomagnetic disturbances: Data from different geographic regions, Atmosphere, 12, 1613, 15pp, 2021.
  766. Singh, P. R. et al., Solar rotational period of cosmic rays and solar activity during the maximum phase of solar cycle 24, Phys. Scr., 96:12, 125033, 9pp, 2021.
  767. Gil, A. et al., Katz fractal dimension of geoelectric field during severe geomagnetic storms, Entropy, 23, 1531, 19pp, 2021.
  768. Beck, P. et al., Comparison of codes assessing radiation exposure at aviation altitudes in case of solar particle events, EURADOS Rep. 2021-03, DOI: 10.12768/zmq7-bv59, 105pp, 2021.
  769. Kozlov, V.I., Outside detection of a powerful source of activity on the Sun on the basis of the “Halo” effect in cosmic rays, Cosmic Res., 59, 312–323, 2021.
  770. Alhassan, J. A., O. Okike and A. E. Chukwude, Investigation of the relation between space-weather parameters and Forbush decreases automatically selected from Moscow and Apatity cosmic ray stations during solar cycle 23, Res. Astron. Astrophys., 21:11, 273, 7 pp, 2021.
  771. Janvier, M. et al., The two-step Forbush decrease: A tale of two substructures modulating galactic cosmic rays within coronal mass ejections, Astrophys. J., 922:2, 216, 15pp, 2021.
  772. Badruddin, B. et al., Study of the development and mechanism of large amplitude decreases in cosmic ray intensity during geomagnetic disturbances in the magnetosphere, Adv. Space Res., 68:11, 4702-4712, 2021.
  773. Freiherr von Forstner, J. L. et al., Radial evolution of the April 2020 stealth coronal mass ejection between 0.8 and 1 AU. Comparison of Forbush decreases at Solar Orbiter and near the Earth, Astron. Astrophys., 656, A1, 16 pp, 2021.
  774. Alhassan, J. A., O. Okike and A. E. Chukwude, Testing the effect of solar wind parameters and geomagnetic storm indices on Galactic cosmic ray flux variation with automatically-selected Forbush decreases, Res. Astron. Astrophys., 21:9, 234, 10 pp, 2021.
  775. Palmerio, E. et al., Magnetic structure and propagation of two interacting CMEs from the Sun to Saturn, J. Geophys. Res.: Space Phys., 126, e2021JA029770, 28pp, 2021.
  776. Svensmark, H. et al., Atmospheric ionization and cloud radiative forcing, Sci. Rep., 11, 19668, 13pp, 2021.
  777. Alemanno, F. et al., Observations of Forbush decreases of cosmic-ray electrons and positrons with the dark matter particle explorer, Astrophys. J. Lett., 920:2, L43, 10 pp, 2021.
  778. Nilsen, K. et al., Sensitivity of middle atmospheric ozone to solar proton events: A comparison between a climate model and satellites, J. Geophys. Res.: Atmosph., 126:18, e2021JD034549, 12pp, 2021.
  779. Stever, S. L. et al., Simulations of systematic effects arising from cosmic rays in the LiteBIRD space telescope, and effects on the measurements of CMB B-modes, J. Cosmol. Astropart. Phys., 2021:09, 013, 24 pp, 2021.
  780. Fadaaq, M., B. Badruddin, Correction to: Modulation of galactic cosmic rays due to magnetic clouds and associated structures in the interplanetary space: 1996-2018, Astrophys., 64:3, 426-434, 2021.
  781. Michnowski, S. et al., Review of relationships between solar wind and ground-level atmospheric electricity: Case studies from Hornsund, Spitsbergen, and Swider, Poland, Surv. Geophys., 42:3, 757-801, 2021.
  782. Semkova, J. et al., Results from radiation environment measurements aboard ExoMars Trace Gas Orbiter in Mars science orbit in May 2018–December 2019, Icarus, 361, 114264, 12 pp, 2021.
  783. Modzelewska, R. and A. Gil, Recurrence of galactic cosmic-ray intensity and anisotropy in solar minima 23/24 and 24/25 observed by ACE/CRIS, STEREO, SOHO/EPHIN and neutron monitors-Fourier and wavelet analysis, Astron. Astrophys., 646, A128, 8pp, 2021.
  784. Maghrabi, A. et al., Short-term periodicities in the downward longwave radiation and their associations with cosmic ray and solar interplanetary data, Adv. Space Res. , 67:5, 1672-1681, 2021.
  785. Kendal, W. S., The snap, crackle and pop of solar flares explained, Braz. J. Probab. Stat., 35:1, 101-118, 2021.
  786. Fadaaq, M., B. Badruddin, Study of transient modulation of galactic cosmic rays due to interplanetary manifestations of coronal mass ejections: 2010 - 2017, Astrophys. Space Sci., 366, 10, DOI:10.1007/s10509-021-03918-6, 2021.
  787. Mishev, A. L., S. A. Koldobskiy, I. G. Usoskin, L. G. Kocharov, and G. A. Kovaltsov, Application of the verified neutron monitor Yield function for an extended analysis of the GLE #71 on 17 May 2012 Space Weather, 19, e02626, 13pp, 2021.
  788. Bazilevskaya, G.A. et al., Characteristic features of solar cosmic rays in the 21st–24th solar-activity cycles according to data from catalogs of solar proton events, Geomagn. Aeron., 61, 6-13, 2021.
  789. Miyahara, H. et al., Gradual onset of the Maunder Minimum revealed by high-precision carbon-14 analyses, Scient. Rep., 11, 5482, 8pp, 2021.
  790. Mertens, C. J., W. K. Tobiska, Space weather radiation effects on high-altitude/-latitude aircraft, in Geophys. Monograph, 262(A. J. Coster, P. Erickson, L. Lanzerotti Eds), 79, DOI:10.1002/9781119815600.ch4, 2021.
  791. Kozlov, V. I., On the probable change of the status of the current unusual failure of 11-year solar cyclicity from local to global, Cosmic Res., 59, 71–79, 2021.
  792. Okike, O., J. A. Alhassan, E. U. Iyida, A. E. Chukwude, A comparison of catalogues of Forbush decreases identified from individual and a network of neutron monitors: a critical perspective, Month. Not. Royal Astron. Soc., 503:4, 5675–5691, 2021.
  793. Balabin, Y. V. et al., Variations in the cosmic ray flux at the end of solar cycle 24, Bulletin Russian Acad. Sci.: Phys., 85, 230–233, 2021.
  794. Mishev, A. L., S. A. Koldobskiy, L. G. Kocharov, I. G. Usoskin, GLE # 67 event on 2 November 2003: An analysis of the spectral and anisotropy characteristics using verified Yield function and detrended neutron monitor data, Solar Phys., 296, 79, 18pp, 2021.
  795. Maghrabi, A., A. Aldosari, M. Almutairi, Correlation analyses between solar activity parameters and cosmic ray muons between 2002 and 2012 at high cutoff rigidity, Adv. Space Res., 68:7, 2941-2952, 2021.
  796. Wang, Y., D. Lyu, G. Qin, B. Xiao, The effects of magnetic boundary on the uniform distribution of energetic particle intensities observed by multiple spacecraft, Astrophys. J., 913:66, 8pp, 2021.
  797. Poluianov, S., I. Usoskin, A. Ibragimov, Data management at the Oulu cosmic ray station, Cosmic ray studies with neutron detectors, 1, 205-207, DOI: 10.38072/2748-3150/p25, 2021.
  798. Fadaaq, M., B. Badruddin, Modulation of galactic cosmic rays due to magnetic clouds and associated structures in the interplanetary space: 1996-2018, Astrophys., 64, 210-218, 2021.
  799. Kobelev, P. G. et al., Snow effect on the neutron monitor network for 2018-2019, Cosmic ray studies with neutron detectors, 1, 183-189, DOI: 10.38072/2748-3150/p23, 2021.
  800. Kravtsova, M. V., S. V. Olemskoy, V. Е. Sdobnov, Ground level enhancements of cosmic rays on October-November 2003, J. Atmosph. Sol.-Terr. Phys., 221, 105707, 6pp, 2021.
  801. Kocharov, L., N. Omodei, A. Mishev, M. Pesce-Rollins, F. Longo, S. Yu, D. E. Gary, R. Vainio , I. Usoskin, Multiple sources of solar high-energy protons, Astrophys. J., 915:12, 9pp, 2021.
  802. Singh, M., B. Badruddin, H. Asiri, Hysteresis, time lag, and relation between solar activity and cosmic rays during solar cycle 24, New Astron., 89, 101652, 6pp, 2021.
  803. Badruddin, B., O. P. M. Aslam, M. Derouich, Study of the recovery characteristics of intense cosmic-ray decreases, Astrophys. Space Sci., 366, 62, DOI:10.1007/s10509-021-03968-w, 2021.
  804. Hands, A. D. P. et al., Detecting ground level enhancements using soil moisture sensor networks, Space Weather, 19, e2021SW002800, 37pp, DOI:10.1029/2021SW002800, 2021.
  805. Okike, O., J. A. Alhassan, Amplitude of the observational Forbush decreases in the presence of cosmic ray diurnal anisotropy during high solar activity in 1972, Solar Phys., 296:112, DOI:10.1007/s11207-021-01855-9, 2021.
  806. Mekhaldi, F. et al., The signal of solar storms embedded in cosmogenic radionuclides: Detectability and uncertainties, J. Geophys. Res.: Space Phys., 126, e2021JA029351, 18pp, DOI:10.1029/2021JA029351, 2021.
  807. Makrantoni, P., H. Mavromichalaki, P. Paschalis, Solar cycle variation of the ionization by cosmic rays in the atmosphere at the mid-latitude region of Athens, Astrophys. Space Sci. 366, 70, DOI:10.1007/s10509-021-03978-8, 2021.
  808. Bösinger, T., The Geophysical Observatory in Sodankylä, Finland – past and present, Hist. Geo Space. Sci., 12, 115–130, 2021.
  809. Modzelewska, R. et al., Scaling features of diurnal variation of galactic cosmic rays, Solar Phys., 296:8, 125, 14pp, 2021.
  810. Mishev, A., S. Poluianov, About the altitude profile of the atmospheric cut-off of cosmic rays: New revised assessment, Solar Phys., 296:129, 14pp, 2021.
  811. Usoskin, I. G., G. A. Kovaltsov, Mind the gap: New precise 14C data indicate the nature of extreme solar particle events, Geophys. Res. Lett., 48, e2021GL094848, 5pp, DOI:10.1029/2021GL094848, 2021.
  812. Fujita, M. et al, Probabilistic risk assessment of solar particle events considering the cost of countermeasures to reduce the aviation radiation dose, Scient. Rep., 11, 17091, 9pp, 2021.
  813. Ajoy G., S. Choudhary, A. K. Gwal, Observations of heliospheric parameters for modulation of cosmic ray intensity during solar cycle 24, Glob. J. Scient. Res. Publ., 1:10, 24-27, 2021.
  814. Guo, J. et al., Radiation environment for future human exploration on the surface of Mars: the current understanding based on MSL/RAD dose measurements, Astron. Astrophys. Rev., 29:8, 81pp, 2021.
  815. Kravtsova, M. V., V. E. Sdobnov, Ground-level enhancement in the intensity of cosmic rays during the decay phase of solar cycle 24: Spectra and anisotropy, Bulletin Russian Acad. Sci.: Physics, 85, 919–921, 2021.
  816. Strauss, R. D. et al., The updated SANAE neutron monitor, Adv. Space Res., 68:6, 2661-2675, 2021.
  817. Bhargawa, A., Singh, A. K., Elucidation of some solar parameters observed during solar cycles 21-24, Adv. Space Res., 68:6, 2643-2660, 2021.
  818. Le, G.-M. et al., Extreme space weather events caused by super active regions during solar cycles 21-24, Res. Astron. Astrophys., 21:5, 130, 7 pp, 2021.
  819. Fu, S. et al., Variations of the galactic cosmic rays in the recent solar cycles, Astrophys. J. Suppl. Ser., 254:2, 12pp, DOI:10.3847/1538-4365/abf936, 2021.
  820. Caprotti, A. S. et al., Yield function of the DOSimetry TELescope count and dose rates aboard the international space station, Space Weather, 19:5, DOI:10.1029/2020SW002510, 2021.
  821. Litvak, M. L. et al., Observations of neutron radiation environment during Odyssey cruise to Mars, Life Sci. Space Res., 29, 53-62, 2021.
  822. Väisänen, P., I. Usoskin, K. Mursula, Seven decades of neutron monitors (1951-2019): Overview and evaluation of data sources, J. Geophys. Res.: Space Phys., 126:5, DOI:10.1029/2020JA028941, 2021.
  823. Abbrescia, M. et al., The cosmic muon and detector simulation framework of the extreme energy events (EEE) experiment, European Phys. J. C, 81:5, DOI:10.1140/epjc/s10052-021-09237-y, 2021.
  824. Usoskin, I. G., S. K. Solanki, N. A. Krivova, B. Hofer, G. A. Kovaltsov, L. Wacker, N. Brehm, B. Kromer, Solar cyclic activity over the last millennium reconstructed from annual 14C data, Astron. Astrophys., 649, A141, 13pp, 2021.
  825. Hubert, G., S. Aubry, Study of the impact of past extreme solar events on the modern air traffic, Space Weather, 19:4, DOI:10.1029/2020SW002665, 2021.
  826. Similä, M., I. Usoskin, S. Poluianov, A. Mishev, G. A. Kovaltsov, D. T. Strauss, High altitude polar NM with the new DAQ system as a tool to study details of the cosmic ray induced nucleonic cascade, J. Geophys. Res.: Space Phys., 126:4, DOI:10.1029/2020JA028959, 2021.
  827. Leamon, R. J., S. W. McIntosh, D. R. Marsh, Termination of solar cycles and correlated tropospheric variability, Earth Space Sci., 8:4, e01223, DOI:10.1029/2020EA001223, 2021.
  828. Okike, O. et al., Testing the impact of coronal mass ejections on cosmic-ray intensity modulation with algorithm selected Forbush decreases, Month. Not. Royal Astron. Soc., 502:1, 300-312, 2021.
  829. Hayakawa, H. et al., The intensity and evolution of the extreme solar and geomagnetic storms in 1938 January, Astrophys. J., 909:2, 197, 14 pp, 2021.
  830. Wang, Y. et al., Statistical survey of reservoir phenomenon in energetic proton events observed by multiple spacecraft, Astrophys. J., 909:2, 110, 19 pp, 2021.
  831. Maghrabi, A., K. Kudela, M. Almutairi, A. Aldosari, Quasi-periodicities in cosmic rays recorded by the KACST muon detector during 2002-2012, Adv. Space Res., 67:5, 1665-1671, 2021.
  832. Koldobskiy, S., O. Raukunen, R. Vainio, G. A. Kovaltsov, I. Usoskin, New reconstruction of event-integrated spectra (spectral fluences) for major solar energetic particle events, Astron. Astrophys., 647, A132, 16 pp, 2021.
  833. Ajello, M. et al., First Fermi-LAT solar flare catalog, Astrophys. J. Suppl. Ser., 252:2, 13, 31 pp, 2021.
  834. Qin, G., S. -S. Wu, Magnetic cloud and sheath in the ground-level enhancement event of 2000 July 14. II. Effects on the Forbush decrease, Astrophys. J., 908:2, 236, 10pp, 2021.
  835. Kato, C. et al., New cosmic ray observations at Syowa station in the Antarctic for space weather study, J. Space Weather Space Clim., 11, 31, 12pp, 2021.
  836. Chapman, S. C., S. W. McIntosh, R. J. Leamon, N. W. Watkins, The Sun's magnetic (Hale) cycle and 27 day recurrences in the aa geomagnetic index, Astrophys. J., 917:2, 54, 15pp, 2021.
  837. Hajra, R., Weakest solar cycle of the space age: A Study on solar wind-magnetosphere energy coupling and geomagnetic activity, Solar Phys., 296:2, 33, DOI:10.1007/s11207-021-01774-9, 2021.
  838. Sinnhuber, M. et al., Heppa III intercomparison experiment on electron precipitation impacts: 2. Model-measurement intercomparison of nitric oxide (NO) during a geomagnetic storm in April 2010, J. Geophys. Res.: Space Phys., 126, e2021JA029466, 34pp, 2021.
  839. Nesse Tyssøy, H. et al., HEPPA III intercomparison experiment on electron precipitation impacts: 1. Estimated ionization rates during a geomagnetic active period in April 2010, J. Geophys. Res.: Space Phys., 126, e2021JA029128, 27pp, 2021.
  840. Singh, P. et al., Forbush decreases related with halo CMEs and interplanetary magnetic field, Int. J. Adv. Engin. Manag. (IJAEM), 3:2, 617-619, 2021.

    2022

  841. Gil, A., A. Mishev, S. Poluianov, I. Usoskin, Diurnal anisotropy of polar neutron monitors: Dome C looks poleward, Adv. Space Res., 70:9, 2618-2624, 2022.
  842. Baral, R. et al., Spectral features of Forbush decreases during geomagnetic storms, J. Atmosph. Sol.-Terr. Phys., in press, 2022.
  843. Martucci, M. et al., The first ground-level enhancement of solar cycle 25 as1seen by the High-Energy Particle Detector (HEPD-01) on board the CSES-01 satellite, Space Weather, doi: 10.1029/2022SW003191, 20pp, 2022.
  844. Amiranashvili, A.G. et al., Comparative statistical analysis of annual variation of the intensity of galactic cosmic rays (in Tbilisi, Almaty, Apatity, Moscow, Novosibirsk and Rome),J. Radiobiol. Rad. Saf., 2:3, 5-14, 2022.
  845. Cesarini, A. et al., Interplanetarymedium monitoring with LISA: Lessons from LISA Pathfinder, J. Space Weather Space Clim., 12, 36, 21pp, 2022.
  846. Khegai, V.V. et al., Earth’s seismic activity and galactic cosmic rays: global and regional characteristics in solar cycles 21–24, Geomagn. Aeron., 62, 514–524, 2022.
  847. Tanaka, M. et al., Levels of atmospheric tritium in the site of fusion test facility, Rad. Prot. Dosim., 198:(13-15), 1084–1089, 2022.
  848. Kovalyov, M., On the natural causes of global warming, Int. J. Env. Clim. Chan., 12:9, 329 - 355, 2022.
  849. Ugwoke, R. E. et al., Analysis of ground level enhancement events of 1989 September 29; 2001 April 15 and 2005 January 20,Res. Astron. Astrophys., 22:10, 105008, 17pp, 2022.
  850. Dhurve, A., A. K. Saxena, R. Ghuratia, Variations of cosmic ray intensity in relation to sunspot number and solar wind parameters over the period 1996-2019, Int. J. Sci. Res. Sci. Tech., 9:4, 418-423, 2022.
  851. Golubenko, K., E. Rozanov, G. Kovaltsov, and I. Usoskin, Zonal mean distribution of cosmogenic isotope (7Be, 10Be, 14C, and 36Cl) production in stratosphere and troposphere, J. Geophys. Res.: Atmos., 127, e2022JD036726, 13pp, 2022.
  852. Belov, A. et al., Solar energetic particle events and Forbush decreases driven by the same solar sources, Universe, 8:403, 18pp, 2022.
  853. Hands, A. D. P. et al., A new model for nowcasting the aviation radiation environment with comparisons to in situ measurements during GLEs, Space Weather, 20:8, e2022SW003155, 25pp, 2022.
  854. Starodubtsev, S. A., Shape of spectrum of galactic cosmic ray intensity fluctuations, Sol.-Terr. Phys., 8:2, 71–75, 2022.
  855. Mavromichalaki, H. et al., The updated version of the A.Ne.Mo.S. GLE alert system: The case of the ground-level enhancement GLE73 on 28 October 2021, Universe, 8:378, 12pp, 2022.
  856. Mishev, A. L., L. G. Kocharov, S. A. Koldobskiy, N. Larsen, E. Riihonen, R. Vainio & I. G. Usoskin, High-resolution spectral and anisotropy characteristics of solar protons during the GLE No73 on 28 October 2021 derived with neutron-monitor data analysis, Solar Phys., 297:7, 88, 23pp, 2022.
  857. Takalo, J., Extracting Hale cycle related components from cosmic-ray data using principal component analysis, Solar Phys. , 297:9, 113, doi.org/10.1007/s11207-022-02048-8, 2022.
  858. Moradi, A. and J. Giacalone, The effect of the fluctuating interplanetary magnetic field on the cosmic ray intensity profile of the ground-level enhancement (GLE) events, Astrophys. J., 932:1, 73, 17pp, 2022.
  859. Litvak, M. L. et al., Long-period variations of the neutron component of the radiation background in the area of the International Space Station according to the data of the BTN-neutron space experiment, Cosmic Res., 60:3, 174–184, 2022.
  860. Wang, R. et al., GeV proton detection in the 8 November 2000 solar event, Universe, 8:287, 11pp, 2022.
  861. Saxena, A. K., A. Dhurve, R. Ghuratia, A view on cosmic ray intensity with solar flares and coronal mass ejections, European Acad. Res., IX:12, 6861-6865, 2022.
  862. Pandey, A., R. Ghuratia, A. Dhurve, Variations of cosmic ray intensity to sunspot number during solar activity Cycle 24, European Acad. Res., IX:10, 6319-6325, 2022.
  863. Tacza, J., K.A. Nicoll, E. Macotela, Periodicities in fair weather potential gradient data from multiple stations at different latitudes, Atmosph. Res., 276, 106250, 17pp, 2022.
  864. Kovalev, I. I., S.V.Olemskoy, V.E.Sdobnov, A proposal to extend the spectrographic global survey method, J. Atmosph. Sol.-Terr. Phys., 235, 105887, doi.org/10.1016/j.jastp.2022.105887, 2022.
  865. Rukundo, W., Solar proton activity over the solar cycle 24 and associated space radiation doses, Magnetosphere and Solar Winds, Humans and Communication, IntechOpen, London, DOI: 10.5772/intechopen.103832, 2022.
  866. Mishev, A., A. Binios, E. Turunen, A.-P. Leppänen, N. Larsen, E. Tanskanen, I. Usoskin, J. Envalla, T. Iinatti, P. Lakkala, Measurements of natural radiation with an MDU Liulin type device at ground and in the atmosphere at various conditions in the Arctic region, Rad. Measur., 154, 106757, 8pp, 2022.
  867. Sedrati, R., D. Bouchachi, Calculation of the atmospheric cosmic ray flux and dosimetry with EXPACS code, J. Korean Phys. Soc., 80:9, 940–947, 2022.
  868. Ehresmann, B. et al., The Martian surface radiation environment at solar minimum measured with MSL/RAD, Icarus, 115035, in press, 2022.
  869. Mallios, S. A. et al., Study of the ground level enhancements effect on atmospheric electric properties and mineral dust particle charging, J. Atmosph. Sol.-Terr. Phys., 233–234, 105871, doi.org/10.1016/j.jastp.2022.105871, 2022.
  870. Poluianov, S., O. Batalla, Cosmic-ray atmospheric cutoff energies of polar neutron monitors, Adv. Space Res. 70:9, 2610-2617, 2022.
  871. Wang, Y. et al., Variation in cosmic-ray intensity lags sunspot number: Implications of late opening of solar magnetic field, Astrophys. J., 928:2, 157, 12pp, 2022.
  872. Mandrikova, O. and B. Mandrikova, Hybrid method for detecting anomalies in cosmic ray variations using neural networks autoencoder, Symmetry, 14, 744, 15pp, 2022.
  873. Kozlov, V. I., Forecasting extreme space-weather events on the basis of cosmic-ray fluctuations, Cosmic Res., 60:2, 79–88, 2022.
  874. Kremenchutskii, D. A., S. K. Konovalov, Beryllium-7 (7Be) and its variability in the near-surface atmosphere of Crimea, the Black Sea region, Atmosph. Pollution Res., 13:5, 101406, doi.org/10.1016/j.apr.2022.101406, 2022.
  875. Koldobskiy, S.A., R. Kähkönen, B. Hofer, N. A. Krivova, G. A. Kovaltsov, I. G. Usoskin, Time lag between cosmic-ray and solar variability: Sunspot numbers and open solar magnetic flux, Solar Phys., 297, 38, 18pp, 2022.
  876. Lopez-Comazzi, A., J. J. Blanco, Short- and mid-term periodicities observed in neutron monitor counting rates throughout solar cycles 20–24, Astrophys. J., 927:2, 155, 17pp, 2022.
  877. Okike, O., J. A. Alhassan, Preliminary investigation of the multivariate relations between program-selected Forbush decreases, worldwide lightning frequency, sunspot number and other solar-terrestrial drivers, Eur. Phys. J. Plus, 137:3, 317, doi.org/10.1140/epjp/s13360-022-02514-z, 2022.
  878. Jeong, J. and S. Oh, Seasonal trends of the cosmic ray intensity observed by 16 neutron monitors for 1964–2020, Adv. Space Res., 70:9, 2625-2635, 2022.
  879. Velinov, Peter I. Y., Major X-class solar flare from earth-facing active region AR12887 on October 28, 2021 and first cosmic ray GLE 73 in Solar cycle 25, C. R. Acad. Bulg. Sci., 75:2, 11pp, DOI:10.7546/CRABS.2022.02.10, 2022.
  880. Ishkov, V. N., Outcomes and lessons from Cycle 24 - the first cycle in the second epoch of low solar activity, Astron. Rep., 66:1, 48–63, 2022.
  881. Miyahara, H. et al., Recurrent large-scale solar proton events before the onset of the Wolf grand solar minimum, Geophys. Res. Lett., 49:5, e2021GL097201, doi.org/10.1029/2021GL097201, 2022.
  882. Lingri, D. et al., Precursory signals of Forbush decreases not connected with shock waves, Solar Phys., 297:2, 24, doi.org/10.1007/s11207-022-01951-4, 2022.
  883. Pätsi, S., A. Mishev, Ionization effect in the Earth’s atmosphere due to cosmic rays during the GLE 71 on 17 May 2012, Adv. Space Res., 69:7, 2893-2901, 2022.
  884. Dorman, L. I., P. I. Y. Velinov, A. Mishev, Global planetary ionization maps in Regener-Pfotzer cosmic ray maximum for GLE 66 during magnetic superstorm of 29–31 October 2003, Adv. Space Res., 70:9, 2593-2601, 2022.
  885. Harrison, R. G., Measuring electrical properties of the lower troposphere using enhanced meteorological radiosondes, Geosci. Instrum. Method. Data Syst., 11, 37–57, 2022.
  886. Bell, T., Do solar cycles explain the emergence of COVID-19? Neutron count comparison between the solar minima of 2008–2009 and 2019–2020, Curr. Opin. Envir. Sci. & Health, 26, 100333, 7pp, 2022.
  887. Chen, JL. et al., Studies of the radiation environment on the Mars surface using the Geant4 toolkit, Nucl. Sci. Tech., 33, 11, 11pp, 2022.
  888. Koldobskiy, S., A. Mishev, Fluences of solar energetic particles for last three GLE events: Comparison of different reconstruction methods, Adv. Space Res. 70:9, 2585-2592, 2022.
  889. De Koning, C. A., V. J. Pizzo and D. B. Seaton, The solar eruption of 2017 September 10: Wavy with a chance of protons, Astrophys. J., 924:2, 106, 11pp, 2022.
  890. Vernetto, S. et al., Long term measurements of neutron dose rates at Testa Grigia high altitude research station (3480 m. a.s.l.), Rad. Phys. Chem. 193, 109972, doi.org/10.1016/j.radphyschem.2022.109972, 2022.
  891. Koldobskiy, S., I. Usoskin, G. A. Kovaltsov, Effective energy of cosmogenic isotope (10Be, 14C and 36Cl) production by solar energetic particles and galactic cosmic rays, J. Geophys. Res.: Space Phys., 127, e2021JA029919, 13pp, 2022.
  892. Luo, P. et al., First measurements of low-energy cosmic rays on the surface of the lunar farside from Chang’E-4 mission, Sci. Adv., 8:2, DOI: 10.1126/sciadv.abk1760, 2022.
  893. Shalaby, S. El. et al., The amplitude and phase distributions of cosmic ray variation at different conditions of Forbush decrease, Results Phys., 43, 106076, 16pp, 2022.
  894. Chertok, I. M., On some features of the solar proton event on 2021 October 28 - GLE73, Mon. Not. Royal Astron. Soc., 517:2, 2709-2713, 2022.
  895. Cliver, E. W., C. J. Schrijver, K. Shibata, I. G. Usoskin, Extreme solar events, Living Rev. Sol. Phys., 19, 2, doi.org/10.1007/s41116-022-00033-8, 2022.
  896. Munakata, K. et al., Large-amplitude bidirectional anisotropy of cosmic-ray intensity observed with worldwide networks of ground-based neutron monitors and muon detectors in 2021 November, Astrophys. J., 938:1, 30, 11 pp, 2022.
  897. Raukunen, O., I. Usoskin, S. Koldobskiy, G. Kovaltsov, R. Vainio, Annual integral solar proton fluences for 1984-2019, Astron. Astrophys., 665, A65, 14 pp, 2022.
  898. Owens, M. J., L. A. Barnard, B. J. S. Pope, M. Lockwood, I. Usoskin, E. Asvestari, Solar energetic-particle ground-level enhancements and the solar cycle, Solar Phys., 297:8, 105, doi.org/10.1007/s11207-022-02037-x, 2022.
  899. Thabet, A. A., A. M. El-Taher, The dependence of solar plasma parameters on the hemispheric solar activity level during the period 1967–2017, Indian J. Phys., 96:10, 2693-2705, 2022.
  900. Alhassan, J. A., O. Okike, A. E. Chukwude, Testing the simultaneity of Forbush decreases with algorithm-selected Forbush event catalogue, J. Astrophys. Astron., 43:1, 6, doi.org/10.1007/s12036-021-09790-8, 2022.
  901. Vlasova, N. A. et al., Catalogs of solar proton events as a tool for studying space weather, Cosmic Res., 60:33, 151-164, 2022.
  902. Popova, J. et al., Research cloud electrification model in the Wisconsin dynamic/microphysical model 2: Charge structure in an idealized thunderstorm and its dependence on ion generation rate, Atmosph. Res., 270, 106090, doi.org/10.1016/j.atmosres.2022.106090, 2022.
  903. Calore, F. et al., AMS-02 antiprotons and dark matter: Trimmed hints and robust bounds, SciPost Phys., 12:5, 163, 31pp, 2022.
  904. Papaioannou, A., A. Kouloumvakos, A. Mishev, R. Vainio, I. Usoskin, K. Herbst, A. P. Rouillard, A. Anastasiadis, J. Gieseler, R. Wimmer-Schweingruber, P. Kühl, The first ground-level enhancement of solar cycle 25 on 28 October 2021, Astron. Astrophys., 660, L5, 9 pp, 2022.
  905. Tacza, J. et al., Investigating effects of solar proton events and Forbush decreases on ground-level potential gradient recorded at middle and low latitudes and different altitudes, Space Weather, 20:3, e2021SW002944, 14pp, 2022.
  906. Ye, Q. et al., The frequency-domain characterization of cosmic ray intensity variations before Forbush decreases associated with geomagnetic storms, Space Weather, 20:3, e2021SW002863, 16pp, 2022.
  907. Brehm, N., ...I. Usoskin, L. Wacker, Tree-rings reveal two strong solar proton events in 7176 and 5259 BCE, Nat. Comm., 13, 1196, 8pp, 2022.
  908. Chen, X. et al., Beryllium-7 and Lead-210 are associated with an increase in the arctic oscillation: Evidence from atmospheric aerosols in a remote tropical region in East Asia, Asia-Pacific J. Atmos. Sci., 58:1, 65-82, 2022.
  909. Jain, K. et al., What seismic minimum reveals about solar magnetism below the surface, Astrophys. J. Lett., 924:1, L20, 8 pp, 2022.
  910. Roman, M. T. et al., Subseasonal variation in Neptune's mid-infrared emission, Plan. Sci. J., 3:4, 78, 41 pp, 2022.
  911. Benghin, V. et al., Results of long-term radiation environment monitoring by the Russian RMS system on board Zvezda module of the ISS, Life Sci. Space Res., in press, doi.org/10.1016/j.lssr.2022.11.002, 2022.
  912. Xue, D. et al., An optimized solution to long-distance flight routes under extreme cosmic radiation, Space Weather, 20, e2022SW003264, 12pp, 2022.
  913. Morton, Donald C., Some notable solar storms, J. Royal Astron. Soc. of Canada, 116:6, 209-215, 2022.
  914. Akhmetov, O. I., I. V. Mingalev, O. V. Mingalev, V. B. Belakhovsky, Z. V. Suvorova, E. A. Maurchev, Y. V. Balabin, Simulation of the influence of solar proton events on propagation of VLF radio signals in the polar region, Proc. SPIE 12341, 28th Int. Symp. Atmosph. and Ocean Optics: Atmosph. Phys., 123417H, doi.org/10.1117/12.2644953, 2022.
  915. Sierra-Porta, D., On the fractal properties of cosmic rays and Sun dynamics cross-correlations, Astrophys. Space Sci., 367, 116, 14pp, 2022.
  916. Kobelev, P.G., et al., A method for correcting neutron monitor data for the snow effect, Geomagn. Aeron., 62, 737–742, 2022.
  917. Zhang, Y. et al., A study of the possible mechanism of the Ground Level Enhancement on 28 October 2021, Sol. Phys., 297, 155, doi.org/10.1007/s11207-022-02087-1, 2022.
  918. Bogdanov, M. B., M.Y. Cherviakov, A. A. Koshel, The possible influence of cosmic rays on the planetary albedo of the Earth, Geomagn. Aeron., 62, 68-73, 2022.

    2023

  919. Fu, S. et al., Measurements of anomalous cosmic rays from the WIND spacecraft over 1994–2021, Mon. Not. Royal Astron. Soc., 518:4, 4832-4838, 2023.
  920. Maghrabi, A. et al., Cosmic ray measurements at high cutoff rigidity site - Preliminary results, Rad. Measur., 161, 106901, doi.org/10.1016/j.radmeas.2023.106901, 2023.
  921. Lagoida, I. A., S. A. Voronov, V. V. Mikhailov,.. S. Koldobskiy.. et al., Study of Forbush decrease recovery times by the payload for antimatter matter exploration and light-nuclei astrophysics (PAMELA) experiment, Sol. Phys., 298, 9, doi.org/10.1007/s11207-022-02097-z, 2023.
  922. Mishev, A. L., Application of the global neutron monitor network for assessment of spectra and anisotropy and the related terrestrial effects of strong SEPs, J. Atmosph. Sol.-Terr. Phys., 243, 106021, 2023.
  923. Ugwoke, R. E. et al., Principal component analysis of ground level enhancement of cosmic ray events, Res. Astron. Astrophys., 23:3, 035017, 2023.
  924. Larsen, N., A. Mishev,I. Usoskin, A new open-source geomagnetosphere propagation tool (OTSO) and its applications, J. Geophys. Res.: Space Phys., 128, e2022JA031061, 2023.
  925. Rees, C. T. et al., Radiation risk assessment for varying space weather conditions for very high altitude ’near space’ tourism balloon flights, J. Space Saf. Engin., 10, 197-207, 2023.
  926. Riggi, F., The secondary cosmic radiation and the influence of the Sun, Messengers from the Cosmos, UNITEXT for Physics, Springer, Cham, 229-239, doi.org/10.1007/978-3-031-24762-0_12, 2023.
  927. Väisänen, P., I. Usoskin, R. Kähkönen, S. Koldobskiy, K. Mursula, Revised reconstruction of the heliospheric modulation potential for 1964-2022, J. Geophys. Res.: Space Phys., 128, e2023JA031352, 2023.
  928. Jung, J., S. Oh, Y. Yi, Chemical composition of solar energetic particle events and their association with ground level enhancement, Adv. Space Res., 71:11, 4904-4915, 2023.
  929. Aguilar, M., ...S. Poluianov,...I. Usoskin, et al., Temporal structures in electron spectra and charge sign effects in galactic cosmic rays, Phys. Rev. Lett., 130, 161001, 2023.
  930. Walzer, U., R. Hendel, Natural climate change and glaciations, Earth-Sci. Rev., 241, 104435, doi.org/10.1016/j.earscirev.2023.104435, 2023.
  931. Bedogni, R. et al, Cosmic neutrons at ground: new spectral measurements at 3480 m a.s.l. and benchmarking of the cascade component as a function of the elevation at around 45o geomagnetic latitude, Eur. Phys. J. Plus, 138, 421, 2023.
  932. Mishev, A. L., S. Kodaira, H. Kitamura, O. Ploc, I. Ambrožová, R.V. Tolochek, I. S. Kartsev, V. A. Shurshakov, A. A. Artamonov, K. O. Inozemtsev, Radiation environment in high-altitude Antarctic plateau: Recent measurements and model studies, Sci. Tot. Env., 890, 164304, 2023.
  933. Adriani, O. et al., Charge-sign dependent cosmic-ray modulation observed with the Calorimetric Electron Telescope on the International Space Station, Phys. Rev. Lett., 130, 211001, 2023.
  934. Liu, W. et al., Modeling the radiation environment of energetic particles at Mars orbit and a first validation against TGO measurements, Astrophys. J., 949, 77, 2023.
  935. Meier, M. M. et al., Impact of the South Atlantic Anomaly on radiation exposure at flight altitudes during solar minimum, Sci. Rep., 13, 9348, 2023.
  936. Musset, S. et al., The time profile of relativistic solar particle events as observed by neutron monitors, J. Space Weather Space Clim., 13, 15, 2023.
  937. Bain, H. M. et al., NOAA Space Weather Prediction Center radiation advisories for the International Civil Aviation Organization, Space Weather, 21, e2022SW003346, 2023.
  938. Guo, J. et al., The first ground level enhancement seen on three planetary surfaces: Earth, Moon, and Mars, Geophys. Res. Lett., 50, e2023GL103069, 2023.
  939. Wang, C. et al., A new method for predicting non-recurrent geomagnetic storms, Space Weather, 21, e2023SW003522, 2023.
  940. Siruk, S. A., A. G. Mayorov, R. F. Yulbarisov, Estimating the effective energy of neutron monitors from 27-day variations in galactic cosmic rays, Bull. Russ. Acad. Sci.: Phys., 87, 968-971, 2023.
  941. Kravtsova, M. V., V. E. Sdobnov, Cosmic ray ground level enhancement on August 24, 1998, Bull. Russ. Acad. Sci.: Phys., 87, 1063-1065, 2023.
  942. Larsen, N., A. L. Mishev, Analysis of the ground level enhancement GLE 60 on 15 April 2001, and its space weather effects: Comparison with dosimetric measurements, Space Weather, 21, e2023SW003488, 2023.
  943. Martinez Sierra, L. M. et al., Unfolding the neutron flux spectrum on the surface of Mars using the MSL-RAD and Odyssey-HEND data, Space Weather, 21, e2022SW003344, 2023.
  944. Mishev, A., S. Panovska, I. Usoskin, Assessment of the radiation risk at flight altitudes for an extreme solar particle storm of 774 AD, J. Space Weather Space Clim., 13, 22, 2023.
  945. Muraki, Y. et al., The 48-year data analysis collected by Nagoya muon telescope -- A Detection of possible (125 ± 45) day periodicity, Universe, 9(9), 387, doi.org/10.3390/universe9090387, 2023.
  946. Goyal, S., D. K. Chourashiya, P. K. Shrivastava, Modulation of cosmic ray intensity along with interplanetary causes and solar activity parameters during solar cycle 24, Int. J. Sci. Res., 12:7, 1419-1421, 2023.
  947. Shalaby, S. E. et al., Analysis of a significant Forbush depression of solar cycles 24 and 25 (2008-2021), Eur. Phys. J. Plus, 138, 819, doi.org/10.1140/epjp/s13360-023-04426-y, 2023.
  948. Kotze, P., Behaviour of 27-day and 13.5-day periodicities in galactic cosmic particles as observed by spacecraft and neutron monitors during different solar polarity cycles, Solar Phys., 298, 107, 2023.
  949. Hellweg, C. E. et al., Space Radiobiology, In: Baatout, S. (eds) Radiobiology Textbook. Springer, Cham., 503-569, doi.org/10.1007/978-3-031-18810-7_10, 2023.
  950. Li, L. et al. Near-surface atmospheric electric field changes through magnetic clouds via coronal mass ejections, Geosci. Lett, 10, 45, 2023.
  951. Usoskin, I. G., A history of solar activity over millennia, Living Rev. Sol. Phys., 20, 2, 2023.
  952. Liu, W. et al., Effects of coronal magnetic field configuration on particle acceleration and release during the ground level enhancement events in solar cycle 24, Astrophys. J., 954, 203, 2023.
  953. Cong, W. et al., A new method for predicting non-recurrent geomagnetic storms, Space Weather, 21:8, e2023SW003522, 2023.
  954. Aslam, O. P. M. et al., Modulation of cosmic-ray antiprotons in the heliosphere: Simulations for a solar cycle, Astrophys. J., 953, 101, 2023.
  955. Kilifarska, N., K. Peqini, Impact of Forbush decreases and geomagnetic storms on the atmospheric ozone profiles, Earth Space Sci., 10, e2023EA002954, 2023.
  956. Menteso, F. M. et al., A preliminary investigation of the empirical relationship between small-amplitude Forbush decreases and solar wind disturbances, Month. Not. Royal Astron. Soc., 521:4, 6330-6353, 2023.
  957. Homola, P. et al., Observation of large scale precursor correlations between cosmic rays and earthquakes with a periodicity similar to the solar cycle, J. Atmosph. Solar-Terr. Phys., 247, 106068, doi.org/10.1016/j.jastp.2023.106068, 2023.
  958. McJannet, D. L., D. Desilets, Incoming neutron flux corrections for cosmic-ray soil and snow sensors using the global neutron monitor network, Water Resour. Res., 59, e2022WR033889, 2023.
  959. Abe, S. et al. (KamLAND Collaboration), First measurement of the strange axial coupling constant using neutral-current quasielastic interactions of atmospheric neutrinos at KamLAND, Phys. Rev. D, 107, 072006, 2023.
  960. Khaksarighiri, S. et al., The zenith-angle dependence of the downward radiation dose rate on the Martian surface: Modeling versus MSL/RAD measurement, J. Geophys. Res.: Planets, 128, e2022JE007644, 2023.
  961. Waterfall, C.O.G. et al., High energy solar particle events and their relationship to associated flare, CME and GLE parameters, Space Weather, 21, e2022SW003334, 2023.
  962. Kumar, V. et al., The influence of solar modulated regional circulations and galactic cosmic rays on global cloud distribution, Scient. Rep., 13, 3707, 2023.
  963. Koldobskiy, S., F. Mekhaldi, G. Kovaltsov, I. Usoskin,Multiproxy reconstructions of integral energy spectra for extreme solar particle events of 7176 BCE, 660 BCE, 775 CE, and 994 CE, J. Geophys. Res.: Space Phys., 128, e2022JA031186, 13pp, 2023.
  964. Ehresmann, B. et al., The Martian surface radiation environment at solar minimum measured with MSL/RAD, Icarus, 393, 115035, doi.org/10.1016/j.icarus.2022.115035, 2023.
  965. Mahbanoo Falamarzi, M. H. M. et al., Investigation of the relationship between nitrogen particle flux of galactic cosmic rays and low cloud cover, Geomagn. Aeron., 63, 68-75, 2023.
  966. Martucci, M. et al., The first ground-level enhancement of solar cycle 25 as seen by the High-Energy Particle Detector (HEPD-01) on board the CSES-01 satellite, Space Weather, 21:1, e2022SW003191, 2023.
  967. Baral, R. et al., Spectral features of Forbush decreases during geomagnetic storms, J. Atmosph. Sol.-Terr. Phys., 242, 105981, 2023.
  968. Soumyaranjan, D., D. Nandy, I. Usoskin, Long-term forcing of the Sun’s coronal field, open flux, and cosmic ray modulation potential during grand minima, maxima, and regular activity phases by the solar dynamo mechanism, Month. Not. Royal Astron. Soc., 525:4, 4801–4814, 2023.
  969. Panovska, S.,S. Poluianov, J. Gao, M. Korte, A. Mishev, Y. Y. Shprits, I. Usoskin, Effects of global geomagnetic field variations over the past 100,000 years on cosmogenic radionuclide production rates in the Earth's atmosphere, J. Geophys. Res.: Space Phys., 128, e2022JA031158, 17pp, 2023.
  970. Vokhmyanin, M. et al., Long-term prediction of sudden stratospheric warmings with geomagnetic and solar activity, J. Geophys. Res.: Atmosph., 128, e2022JD037337, 25pp, 2023.
  971. Usoskin, I. G., S. A. Koldobskiy, S. V. Poluianov, O. Raukunen, R.Vainio, G. A. Kovaltsov, Consistency of the average flux of solar energetic particles over timescales of years to megayears, Astron. Astrophys., 670, L22, 9pp, 2023.
  972. Romanowsky, A. J. et al., Low-density star cluster formation: discovery of a young faint fuzzy on the outskirts of the low-mass spiral galaxy NGC 247, Mont. Not. Royal Astron. Soc., 518:2, 3164–3182, 2023.
  973. McIntosh, S. W., R. J. Leamon, R. Egeland, Deciphering solar magnetic activity: The (solar) hale cycle terminator of 2021, Front. Astron. Space Sci., 10, 16, 12pp, 2023.
  974. Ghag, K. et al., The role of extreme geomagnetic storms in the Forbush decrease profile observed by neutron monitors, J. Atmosph. Sol.-Terr. Phys., 252, 106146, doi.org/10.1016/j.jastp.2023.106146, 2023.
  975. Akhmetov, O. I. et al., Influence of strong solar proton events on propagation of radio signals in the VLF range in a high-latitude region, Sol.-Terr. Phys., 9:3, 30–42, 2023.
  976. Usoskin, I., F. Miyake, M. Baroni, N. Brehm, S. Dalla, H. Hayakawa, H. Hudson, A. J. T. Jull, D. Knipp, S. Koldobskiy, H. Maehara, F. Mekhaldi, Y. Notsu, S. Poluianov, E. Rozanov, A. Shapiro, T. Spiegl, T. Sukhodolov, J. Uusitalo, L. Wacker, Extreme solar events: Setting up a paradigm, Space Sci. Rev., 219:73, 114pp, 2023.
  977. Srivastava, P., A. K. Singh, Temporal variability of galactic cosmic ray intensity and its dependence on various solar parameters observed during solar cycles 23 and 24, Indian J Phys., doi.org/10.1007/s12648-023-02987-3, 2023.
  978. Matthia, D. et al., Active radiation measurements over one solar cycle with two DOSTEL instruments in the Columbus laboratory of the International Space Station, Life Sci. Space Res., 39, 14-25, 2023.
  979. Benghin, V. et al., Results of long-term radiation environment monitoring by the Russian RMS system on board Zvezda module of the ISS, Life Sci. Space Res., 39, 3-13, 2023.
  980. Maurin, D. et al., A cosmic-ray database update: CRDB v4.1, Europ. Phys. J. C, 83:10, 971, 21pp, 2023.
  981. Richardson, I. G et al., Solar energetic-particle-associated coronal mass ejections observed by the Mauna Loa Solar Observatory Mk3 and Mk4 coronameters, Solar Phys., 298:9, 105, 48pp, 2023.
  982. Veselinovic, N. B. et al., Analyzing solar activity with Belgrade muon station: case study of 2021 November 4th Forbush decrease, Contrib. Astron. Obs. Skalnate Pleso, 53:3, 148–155, 2023.
  983. Kim, E., S. Lee, B. Kim, Latest research trends on space environments in Korea, J. Space Technol. Appl., 3:4, 301-321, 2023.
  984. Mubashir, A. et al., Muon flux variations measured by low-cost portable cosmic ray detectors and their correlation with space weather activity, J. Geophys. Res.: Space Phys., 128, e2023JA031943, 14pp, 2023.
  985. Miyake, F. et al., No signature of extreme solar energetic particle events in high-precision 14 C data from the Alaskan tree for 1844–1876 CE, J. Space Weather Space Clim., 13, 31, 8pp, 2023.
  986. Uga, C. I., B. Adhikari, D. Teferi, Analysis of cosmic ray fluxes at different stations during geomagnetic storms using wavelet based approaches: Continuous wavelet transform and multi-resolution analysis, Geomagn. Aeron., 63, 818–838, 2023.

    2024

  987. Maghrabi, A., A. Aisha, A. Aied, Exploring the relationship between space weather parameters and cosmic ray muons observed at high cut-off rigidity site: A correlation, artificial neural network, and spectral analysis, Adv. Space Res., 73:1, 1092-1102, 2024.
  988. Poluianov, S., O. Batalla, A. Mishev, S. Koldobskiy, I. Usoskin, Two new sub-GLEs found in data of neutron monitors at South Pole and Vostok: On 09 June 1968 and 27 February 1969, Sol. Phys., 299, 6, 23pp, 2024.
  989. Suleymanova, R.A., L. I. Miroshnichenko, V. I. Abramenko, Magnetic configuration of active regions associated with GLE events, Sol. Phys., 299, 7, doi.org/10.1007/s11207-023-02248-w, 2024.
  990. Starodubtsev, S. et al., Investigating the heliosphere, magnetosphere, atmosphere, and properties of cosmic rays during the 2018 Aug 25–26 strong geomagnetic storm, Adv. Space Res., 73:8, 4363-4377, 2024.
  991. Putri, A. N. I., D. Herdiwijaya, T. Hidayat, On the correlation of cosmic-ray intensity with solar activity and interplanetary parameters, Sol. Phys., 299, 12, doi.org/10.1007/s11207-023-02249-9, 2024.
  992. Maurchev, E.A. et al., Comparison of atmospheric ionization for solar proton events of the last three solar cycles, Atmosph., 15, 151, 15pp, 2024.
  993. Sedrati, R., R. Attallah, D. Bouchachi, Probing the angular distribution of terrestrial cosmic-ray nuclei, Europhys. Lett., 145:5, 59001, DOI 10.1209/0295-5075/ad27f2, 2024.
  994. Takalo, J., The instantaneous response of the geomagnetic field, near-Earth IMF, and cosmic-ray intensity to solar flares, Sol. Phys., 299, 16, 15pp, 2024.
  995. Schubert, M. et al., Short-lived natural radionuclides as tracers in hydrogeological studies - A review, Sci. Tot. Envir., 920, 170800, 24pp, 2024.
  996. Sierra-Porta, D., Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques, Chaos, 34, 023114, doi.org/10.1063/5.0167156, 2024.
  997. Funke, B., T. Dudok de Wit, I. Ermolli, M. Haberreiter, D. Kinnison, D. Marsh, H. Nesse, A. Seppälä, M. Sinnhuber, I. Usoskin, Towards the definition of a solar forcing dataset for CMIP7, Geosci. Mod. Dev., 17, 1217–1227, 2024.
  998. Syiemlieh, R., E. Saikia, Can cloud images help in predicting geomagnetic storms?, J. Atmosph. Sol.-Terr. Phys., 256, 106186, doi.org/10.1016/j.jastp.2024.106186, 2024.
  999. Blanco, J. J. et al., Evolution of the cosmic ray spectrum during a Forbush decrease, Adv. Space Res., 73:9, 4842-4852, 2024.
  1000. Mishev, A. L., S. A. Koldobskiy, N. Larsen, I. G. Usoskin, Spectra and anisotropy of solar energetic protons during GLE#65 on 28 October, 2003 and GLE #66 on 29 October, 2003, Sol. Phys., 299, 24, 28pp, 2024.
  1001. Liu, W. et al., A comprehensive comparison of various galactic cosmic-ray models to the state-of-the-art particle and radiation measurements, Astrophys. J. Supp. Ser., 271, 18, 29pp, 2024.
  1002. Kovalev, I. I. et al., Spectra and anisotropy of cosmic rays during GLE64, Geomagn. Aeron, 64, 44–48, 2024.
  1003. Chilingarian, A. et al., Increase in the count rates of ground-based cosmic-ray detectors caused by the heliomagnetic disturbance on 5 November 2023, Europhys. Lett., DOI 10.1209/0295-5075/ad329c, in press, 2024.
  1004. Mavromichalaki, H. et al., An assessment of the GLE Alert++ warning system, Atmosph., 15, 345, 16pp, 2024.
  1005. Nwuzor, O. C. et al., Investigating the dependence of Forbush decrease on geomagnetic cutoff rigidity, Glob. J. Pure App. Sci., 30, 101-113, 2024.
  1006. Maghrabi, A., Ultraviolet radiation quasi-periodicities and their possible link with the cosmic ray and solar interplanetary data, Adv. Meteorol., 2024, 1165223, 10 pp, 2024.
  1007. Hayakawa, H., S. Koldobskiy, A. Mishev, S. Poluianov, A. Gil, I. Usoskina, I. Usoskin, Revision of the strongest solar energetic particle event of 23 February 1956 (GLE #5) based on the rediscovered original records, Astron. Astrophys., 684, A46, 10pp, 2024.
  1008. Srivastava, P., S. Yadav, A. K. Singh, Appraising the impact of space radiation on the terrestrial environment, Indian J. Phys., doi.org/10.1007/s12648-024-03150-2, 2024.
Last modified in Nov 2023 by I. Usoskin